131 research outputs found

    Spectrum and antibiotic sensitivity of bacteria contaminating the upper gut in patients with malabsorption syndrome from the tropics

    Get PDF
    BACKGROUND: Various causes of malabsorption syndrome (MAS) are associated with intestinal stasis that may cause small intestinal bacterial overgrowth (SIBO). Frequency, nature and antibiotic sensitivity of SIBO in patients with MAS are not well understood. METHODS: Jejunal aspirates of 50 consecutive patients with MAS were cultured for bacteria and colony counts and antibiotic sensitivity were performed. Twelve patients with irritable bowel syndrome were studied as controls. RESULTS: Culture revealed growth of bacteria in 34/50 (68%) patients with MAS and 3/12 controls (p < 0.05). Colony counts ranged from 3 × 10(2 )to 10(15 )(median 10(5)) in MAS and 100 to 1000 (median 700) CFU/ml in controls (p 0.003). 21/50 (42%) patients had counts ≥10(5 )CFU/ml in MAS and none of controls (p < 0.05). Aerobes were isolated in 34/34 and anaerobe in 1/34. Commonest Gram positive and negative bacteria were Streptococcus species and Escherichia coli respectively. The isolated bacteria were more often sensitive to quinolones than to tetracycline (ciprofloxacin: 39/47 and norfloxacin: 34/47 vs. tetracycline 19/47, <0.01), ampicillin, erythromycin and co-trimoxazole (21/44, 14/22 and 24/47 respectively vs. tetracycline, p = ns). CONCLUSIONS: SIBO is common in patients with MAS due to various causes and quinolones may be the preferred treatment. This needs to be proved further by a randomized controlled trial

    Dermcidin expression in hepatic cells improves survival without N-glycosylation, but requires asparagine residues

    Get PDF
    Proteolysis-inducing factor, a cachexia-inducing tumour product, is an N-glycosylated peptide with homology to the unglycosylated neuronal survival peptide Y-P30 and a predicted product of the dermcidin gene, a pro-survival oncogene in breast cancer. We aimed to investigate whether dermcidin is pro-survival in liver cells, in which proteolysis-inducing factor induces catabolism, and to determine the role of potentially glycosylated asparagine residues in this function. Reverse cloning of proteolysis-inducing factor demonstrated ∼100% homology with the dermcidin cDNA. This cDNA was cloned into pcDNA3.1+ and both asparagine residues removed using site-directed mutagenesis. In vitro translation demonstrated signal peptide production, but no difference in molecular weight between the products of native and mutant vectors. Immunocytochemistry of HuH7 cells transiently transfected with V5-His-tagged dermcidin confirmed targeting to the secretory pathway. Stable transfection conferred protection against oxidative stress. This was abrogated by mutation of both asparagines in combination, but not by mutation of either asparagine alone. These findings suggest that dermcidin may function as an oncogene in hepatic as well as breast cells. Glycosylation does not appear to be required, but the importance of asparagine residues suggests a role for the proteolysis-inducing factor core peptide domain

    A modified RNA-Seq approach for whole genome sequencing of RNA viruses from faecal and blood samples

    Get PDF
    To date, very large scale sequencing of many clinically important RNA viruses has been complicated by their high population molecular variation, which creates challenges for polymerase chain reaction and sequencing primer design. Many RNA viruses are also difficult or currently not possible to culture, severely limiting the amount and purity of available starting material. Here, we describe a simple, novel, high-throughput approach to Norovirus and Hepatitis C virus whole genome sequence determination based on RNA shotgun sequencing (also known as RNA-Seq). We demonstrate the effectiveness of this method by sequencing three Norovirus samples from faeces and two Hepatitis C virus samples from blood, on an Illumina MiSeq benchtop sequencer. More than 97% of reference genomes were recovered. Compared with Sanger sequencing, our method had no nucleotide differences in 14,019 nucleotides (nt) for Noroviruses (from a total of 2 Norovirus genomes obtained with Sanger sequencing), and 8 variants in 9,542 nt for Hepatitis C virus (1 variant per 1,193 nt). The three Norovirus samples had 2, 3, and 2 distinct positions called as heterozygous, while the two Hepatitis C virus samples had 117 and 131 positions called as heterozygous. To confirm that our sample and library preparation could be scaled to true high-throughput, we prepared and sequenced an additional 77 Norovirus samples in a single batch on an Illumina HiSeq 2000 sequencer, recovering >90% of the reference genome in all but one sample. No discrepancies were observed across 118,757 nt compared between Sanger and our custom RNA-Seq method in 16 samples. By generating viral genomic sequences that are not biased by primer-specific amplification or enrichment, this method offers the prospect of large-scale, affordable studies of RNA viruses which could be adapted to routine diagnostic laboratory workflows in the near future, with the potential to directly characterize within-host viral diversity

    M-CSF Induces Monocyte Survival by Activating NF-κB p65 Phosphorylation at Ser276 via Protein Kinase C

    Get PDF
    Macrophage colony-stimulating factor (M-CSF) promotes mononuclear phagocyte survival and proliferation. The transcription factor Nuclear Factor-kappaB (NF-κB) is a key regulator of genes involved in M-CSF-induced mononuclear phagocyte survival and this study focused at identifying the mechanism of NF-κB transcriptional activation. Here, we demonstrate that M-CSF stimulated NF-κB transcriptional activity in human monocyte-derived macrophages (MDMs) and the murine macrophage cell line RAW 264.7. The general protein kinase C (PKC) inhibitor Ro-31-8220, the conventional PKCα/β inhibitor Gö-6976, overexpression of dominant negative PKCα constructs and PKCα siRNA reduced NF-κB activity in response to M-CSF. Interestingly, Ro-31-8220 reduced Ser276 phosphorylation of NF-κBp65 leading to decreased M-CSF-induced monocyte survival. In this report, we identify conventional PKCs, including PKCα as important upstream kinases for M-CSF-induced NF-κB transcriptional activation, NF-κB-regulated gene expression, NF-κB p65 Ser276 phosphorylation, and macrophage survival. Lastly, we find that NF-κB p65 Ser276 plays an important role in basal and M-CSF-stimulated NF-κB activation in human mononuclear phagocytes

    The Global Burden of Alveolar Echinococcosis

    Get PDF
    Human alveolar echinococcosis (AE), caused by the larval stage of the fox tapeworm Echinococcus multilocularis, is amongst the world's most dangerous zoonoses. Transmission to humans is by consumption of parasite eggs which are excreted in the faeces of the definitive hosts: foxes and, increasingly, dogs. Transmission can be through contact with the definitive host or indirectly through contamination of food or possibly water with parasite eggs. We made an intensive search of English, Russian, Chinese and other language databases. We targeted data which could give country specific incidence or prevalence of disease and searched for data from every country we believed to be endemic for AE. We also used data from other sources (often unpublished). From this information we were able to make an estimate of the annual global incidence of disease and disease burden using standard techniques for calculation of DALYs. Our studies suggest that AE results in a median of 18,235 cases globally with a burden of 666,433 DALYs per annum. This is the first estimate of the global burden of AE both in terms of global incidence and DALYs and demonstrates the burden of AE is comparable to several diseases in the neglected tropical disease cluster

    Aag DNA Glycosylase Promotes Alkylation-Induced Tissue Damage Mediated by Parp1

    Get PDF
    Alkylating agents comprise a major class of front-line cancer chemotherapeutic compounds, and while these agents effectively kill tumor cells, they also damage healthy tissues. Although base excision repair (BER) is essential in repairing DNA alkylation damage, under certain conditions, initiation of BER can be detrimental. Here we illustrate that the alkyladenine DNA glycosylase (AAG) mediates alkylation-induced tissue damage and whole-animal lethality following exposure to alkylating agents. Aag-dependent tissue damage, as observed in cerebellar granule cells, splenocytes, thymocytes, bone marrow cells, pancreatic β-cells, and retinal photoreceptor cells, was detected in wild-type mice, exacerbated in Aag transgenic mice, and completely suppressed in Aag−/− mice. Additional genetic experiments dissected the effects of modulating both BER and Parp1 on alkylation sensitivity in mice and determined that Aag acts upstream of Parp1 in alkylation-induced tissue damage; in fact, cytotoxicity in WT and Aag transgenic mice was abrogated in the absence of Parp1. These results provide in vivo evidence that Aag-initiated BER may play a critical role in determining the side-effects of alkylating agent chemotherapies and that Parp1 plays a crucial role in Aag-mediated tissue damage.National Institutes of Health (U.S.) (NIH grant R01-CA075576)National Institutes of Health (U.S.) (NIH grant R01-CA055042)National Institutes of Health (U.S.) (NIH grant R01-CA149261)National Institutes of Health (U.S.) (NIH grant P30-ES00002)National Institutes of Health (U.S.) (NIH grant P30-ES02109)National Center for Research Resources (U.S.) (grant number M01RR-01066)National Center for Research Resources (U.S.) (grant number UL1 RR025758, Harvard Clinical and Translational Science Center
    corecore