100 research outputs found
Effects of brassinosteroid, auxin, and cytokinin on ethylene production in Arabidopsis thaliana plants
Inflorescence stalks produced the highest amount of ethylene in response to IAA as compared with other plant parts tested. Leaf age had an effect on IAA-induced ethylene with the youngest leaves showing the greatest stimulation. The highest amount of IAA-induced ethylene was produced in the root or inflorescence tip with regions below this producing less. Inflorescence stalks treated with IAA, 2,4-D, or NAA over a range of concentrations exhibited an increase in ethylene production starting at 1 μM with increasingly greater responses up to 100 μM, followed by a plateau at 500 μM and a significant decline at 1000 μM. Both 2,4-D and NAA elicited a greater response than IAA at all concentrations tested in inflorescence stalks. Inflorescence leaves treated with IAA, 2,4-D, or NAA exhibited the same trend as inflorescence stalks. However, they produced significantly less ethylene. Inflorescence stalks and leaves treated with 100 μM IAA exhibited a dramatic increase in ethylene production 2 h following treatment initiation. Inflorescence stalks showed a further increase 4 h following treatment initiation and no further increase at 6 h. However, there was a slight decline between 6 h and 24 h. Inflorescence leaves exhibited similar rates of IAA-induced ethylene between 2 h and 24 h. Light and high temperature caused a decrease in IAA-induced ethylene in both inflorescence stalks and leaves. Three auxin-insensitive mutants were evaluated for their inflorescence's responsiveness to IAA. aux2 did not produce ethylene in response to 100 μM IAA, while axr1-3 and axr1-12 showed reduced levels of IAA-induced ethylene as compared with Columbia wild type. Inflorescences treated with brassinolide alone had no effect on ethylene production. However, when brassinolide was used in combination with IAA there was a dramatic increase in ethylene production above the induction promoted by IAA alone
Osmoregulators proline and glycine betaine counteract salinity stress in canola
Salt inundation leads to increased salinization of arable land in many arid and semi-arid regions. Until genetic solutions are found farmers and growers must either abandon salt-affected fields or use agronomic treatments that alleviate salt stress symptoms. Here, field experiments were carried out to study the effect of the osmoregulators proline at 200 mg L-1 and glycine betaine at 400 mg L-1 in counteracting the harmful effect of soil salinity stress on canola plants grown in Egypt. We assessed growth characteristics, yield and biochemical constituents. Results show first that all growth characters decreased with increasing salinity stress but applied osmoregulators alleviated these negative effects. Second, salinity stress decreased photosynthetic pigments, K and P contents, whilst increasing proline, soluble sugars, ascorbic acid, Na and Cl contents. Third, application of osmoregulators without salt stress increased photosynthetic pigments, proline, soluble sugars, N, K and P contents whilst decreasing Na and Cl contents. It is concluded that the exogenously applied osmoregulators glycine betaine and proline can fully or partially counteract the harmful effect of salinity stress on growth and yield of canola.© INRA and Springer-Verlag, France 2012
Theory of continuum percolation III. Low density expansion
We use a previously introduced mapping between the continuum percolation
model and the Potts fluid (a system of interacting s-states spins which are
free to move in the continuum) to derive the low density expansion of the pair
connectedness and the mean cluster size. We prove that given an adequate
identification of functions, the result is equivalent to the density expansion
derived from a completely different point of view by Coniglio et al. [J. Phys A
10, 1123 (1977)] to describe physical clustering in a gas. We then apply our
expansion to a system of hypercubes with a hard core interaction. The
calculated critical density is within approximately 5% of the results of
simulations, and is thus much more precise than previous theoretical results
which were based on integral equations. We suggest that this is because
integral equations smooth out overly the partition function (i.e., they
describe predominantly its analytical part), while our method targets instead
the part which describes the phase transition (i.e., the singular part).Comment: 42 pages, Revtex, includes 5 EncapsulatedPostscript figures,
submitted to Phys Rev
- …