33 research outputs found

    Drought Impact Is Alleviated in Sugar Beets (Beta vulgaris L.) by Foliar Application of Fullerenol Nanoparticles

    Get PDF
    Over the past few years, significant efforts have been made to decrease the effects of drought stress on plant productivity and quality. We propose that fullerenol nanoparticles (FNPs, molecular formula C-60(OH)(24)) may help alleviate drought stress by serving as an additional intercellular water supply. Specifically, FNPs are able to penetrate plant leaf and root tissues, where they bind water in various cell compartments. This hydroscopic activity suggests that FNPs could be beneficial in plants. The aim of the present study was to analyse the influence of FNPs on sugar beet plants exposed to drought stress. Our results indicate that intracellular water metabolism can be modified by foliar application of FNPs in drought exposed plants. Drought stress induced a significant increase in the compatible osmolyte proline in both the leaves and roots of control plants, but not in FNP treated plants. These results indicate that FNPs could act as intracellular binders of water, creating an additional water reserve, and enabling adaptation to drought stress. Moreover, analysis of plant antioxidant enzyme activities (CAT, APx and GPx), MDA and GSH content indicate that fullerenol foliar application could have some beneficial effect on alleviating oxidative effects of drought stress, depending on the concentration of nanoparticles applied. Although further studies are necessary to elucidate the biochemical impact of FNPs on plants; the present results could directly impact agricultural practice, where available water supplies are often a limiting factor in plant bioproductivity

    Properties of Neon, Magnesium, and Silicon Primary Cosmic Rays Results from the Alpha Magnetic Spectrometer

    Get PDF
    We report the observation of new properties of primary cosmic rays, neon (Ne), magnesium (Mg), and silicon (Si), measured in the rigidity range 2.15 GV to 3.0 TV with 1.8 x 10(6) Ne, 2.2 x 10(6) Mg, and 1.6 x 10(6) Si nuclei collected by the Alpha Magnetic Spectrometer experiment on the International Space Station. The Ne and Mg spectra have identical rigidity dependence above 3.65 GV. The three spectra have identical rigidity dependence above 86.5 GV, deviate from a single power law above 200 GV, and harden in an identical way. Unexpectedly, above 86.5 GV the rigidity dependence of primary cosmic rays Ne, Mg, and Si spectra is different from the rigidity dependence of primary cosmic rays He, C, and O. This shows that the Ne, Mg, and Si and He, C, and O are two different classes of primary cosmic rays

    Towards Understanding the Origin of Cosmic-Ray Positrons

    Get PDF
    Precision measurements of cosmic ray positrons are presented up to 1 TeV based on 1.9 million positrons collected by the Alpha Magnetic Spectrometer on the International Space Station. The positron flux exhibits complex energy dependence. Its distinctive properties are (a) a significant excess starting from 25.2 +/- 1.8 GeV compared to the lower-energy, power-law trend, (b) a sharp dropoff above 284(-64)(+91) GeV, (c) in the entire energy range the positron flux is well described by the sum of a term associated with the positrons produced in the collision of cosmic rays, which dominates at low energies, and a new source term of positrons, which dominates at high energies, and (d) a finite energy cutoff of the source term of E-s = 810(-180)(+310) GeV is established with a significance of more than 4 sigma. These experimental data on cosmic ray positrons show that, at high energies, they predominantly originate either from dark matter annihilation or from other astrophysical sources

    Properties of Cosmic Helium Isotopes Measured by the Alpha Magnetic Spectrometer

    Get PDF
    Precision measurements by the Alpha Magnetic Spectrometer (AMS) on the International Space Station of He-3 and He-4 fluxes are presented. The measurements are based on 100 million He-4 nuclei in the rigidity range from 2.1 to 21 GV and 18 million He-3 from 1.9 to 15 GV collected from May 2011 to November 2017. We observed that the He-3 and He-4 fluxes exhibit nearly identical variations with time. The relative magnitude of the variations decreases with increasing rigidity. The rigidity dependence of the He-3/He-4 flux ratio is measured for the first time. Below 4 GV, the He-3/He-4 flux ratio was found to have a significant long-term time dependence. Above 4 GV, the He-3/He-4 flux ratio was found to be time independent, and its rigidity dependence is well described by a single power law proportional to R-Delta with Delta = 0.294 0.004. Unexpectedly, this value is in agreement with the B/O and B/C spectral indices at high energies

    Precision Measurement of Cosmic-Ray Nitrogen and its Primary and Secondary Components with the Alpha Magnetic Spectrometer on the International Space Station

    Get PDF
    A precision measurement of the nitrogen flux with rigidity (momentum per unit charge) from 2.2 GV to 3.3 TV based on 2.2 x 10(6) events is presented. The detailed rigidity dependence of the nitrogen flux spectral index is presented for the first time. The spectral index rapidly hardens at high rigidities and becomes identical to the spectral indices of primary He, C, and O cosmic rays above similar to 700 GV. We observed that the nitrogen flux Phi(N) can be presented as the sum of its primary component Phi(P)(N) and secondary component Phi(S)(N), Phi(N) = Phi(P)(N) + Phi(S)(N), and we found Phi(N) is well described by the weighted sum of the oxygen flux Phi(O) (primary cosmic rays) and the boron flux Phi(B) (secondary cosmic rays), with Phi(P)(N) = (0.090 +/- 0.002) x Phi(O) and Phi(S)(N) = (0.62 +/- 0.02) x Phi(B) over the entire rigidity range. This corresponds to a change of the contribution of the secondary cosmic ray component in the nitrogen flux from 70% at a few GV to < 30% above 1 TV

    Properties of Iron Primary Cosmic Rays: Results from the Alpha Magnetic Spectrometer

    Get PDF
    We report the observation of new properties of primary iron (Fe) cosmic rays in the rigidity range 2.65 GV to 3.0 TV with 0.62 x 10(6) iron nuclei collected by the Alpha Magnetic Spectrometer experiment on the International Space Station. Above 80.5 GV the rigidity dependence of the cosmic ray Fe flux is identical to the rigidity dependence of the primary cosmic ray He, C, and O fluxes, with the Fe/O flux ratio being constant at 0.155 +/- 0.006. This shows that unexpectedly Fe and He, C, and O belong to the same class of primary cosmic rays which is different from the primary cosmic rays Ne, Mg, and Si class
    corecore