1,094 research outputs found
Lowest eigenvalue of the nuclear shell model Hamiltonian
In this paper we investigate regular patterns of matrix elements of the
nuclear shell model Hamiltonian , by sorting the diagonal matrix elements
from the smaller to larger values. By using simple plots of non-zero matrix
elements and lowest eigenvalues of artificially constructed "sub-matrices"
of , we propose a new and simple formula which predicts the lowest
eigenvalue with remarkable precisions.Comment: six pages, four figures, Physical Review C, in pres
Coherent Pair State of Pion in Constituent Quark Model
A coherent state of pions is introduced to the nonrelativistic quark model.
The coherent pair approximation is employed for the pion field in order to
maintain the spin-isospin symmetry. In this approximation the pion is localized
in the momentum space, and the vertex form factor in the pion-quark interaction
is derived from this localization. The nucleon masses and wave functions are
calculated using this model, and our results are compared to those of the quark
model with the one pion exchange potential. Similar result is obtained for the
mass spectrum, but there exists a clear difference in the internal structure of
nucleon resonances.Comment: 17 pages, 2 figures, revtex, submitted to Phys. Rev.
Theory of magnetoelectric resonance in two-dimensional antiferromagnet via spin-dependent metal-ligand hybridization mechanism
We investigate magnetic excitations in an Heisenberg model
representing two-dimensional antiferromagnet . In
terahertz absorption experiment of the compound, Goldstone mode as well as
novel magnetic excitations, conventional magnetic resonance at 2 meV and both
electric- and magnetic-active excitation at 4 meV, have been observed. By
introducing a hard uniaxial anisotropy term , three modes can
be explained naturally. We also indicate that, via the spin-dependent
metal-ligand hybridization mechanism, the 4 meV excitation is an
electric-active mode through the coupling between spin and electric-dipole.
Moreover, at 4 meV excitation, an interference between magnetic and electric
responses emerges as a cross correlated effect. Such cross correlation effects
explain the non-reciprocal linear directional dichroism observed in .Comment: 5 pages, 3 figure
SU(3) realization of the rigid asymmetric rotor within the IBM
It is shown that the spectrum of the asymmetric rotor can be realized quantum
mechanically in terms of a system of interacting bosons. This is achieved in
the SU(3) limit of the interacting boson model by considering higher-order
interactions between the bosons. The spectrum corresponds to that of a rigid
asymmetric rotor in the limit of infinite boson number.Comment: 9 pages, 2 figures, LaTeX, epsfi
Optical Spectra in the Ferromagnetic States near the Charge Ordering
The optical conductivity is studied numerically for the ferromagnetic
metallic state close to the charge ordering observed in perovskite manganites.Comment: 11 pages, Latex, 6 ps figure
One-Center Charge Transfer Transitions in Manganites
In frames of a rather conventional cluster approach, which combines the
crystal field and the ligand field models we have considered different charge
transfer (CT) states and O 2p-Mn 3d CT transitions in MnO octahedra.
The many-electron dipole transition matrix elements were calculated using the
Racah algebra for the cubic point group. Simple "local" approximation allowed
to calculate the relative intensity for all dipole-allowed and
CT transitions. We present a self-consistent description of
the CT bands in insulating stoichiometric LaMnO compound with the
only Mn valent state and idealized octahedral MnO centers
which allows to substantially correct the current interpretation of the optical
spectra. Our analysis shows the multi-band structure of the CT optical response
with the weak low-energy edge at 1.7 eV, associated with forbidden
transition and a series of the weak and strong
dipole-allowed high-energy transitions starting from 2.5 and 4.5 eV,
respectively, and extending up to nearly 11 eV. The most intensive features are
associated with two strong composite bands near eV and
eV, respectively, resulting from the superposition of the dipole-allowed
and CT transitions. These predictions are in good
agreement with experimental spectra. The experimental data point to a strong
overscreening of the crystal field parameter in the CT states of
MnO centers.Comment: 10 pages, 3 figure
Quadrupole Collective States in a Large Single-J Shell
We discuss the ability of the generator coordinate method (GCM) to select
collective states in microscopic calculations. The model studied is a
single- shell with hamiltonian containing the quadrupole-quadrupole
interaction. Quadrupole collective excitations are constructed by means of the
quadrupole single-particle operator. Lowest collective bands for =31/2 and
particle numbers =4,6,8,10,12, and are found. For lower values of ,
exact solutions are obtained and compared with the GCM results.Comment: submitted for publication in Phys. Rev. C, revtex, 28 pages, 15
PostScript figures available on request from [email protected], preprint
No. IFT/17/9
Direct observation of cycloidal spin modulation and field-induced transition in N\'eel-type skyrmion-hosting VOSeO
We investigate the spin rotational structure of magnetic skyrmions in a
tetragonal polar magnet VOSe2O5 via polarized small-angle neutron scattering
(SANS). Spin polarization analysis of the scattered neutrons provides
consistent evidence for the cycloidal spin modulation in all the incommensurate
phases at zero and non-zero magnetic field along the c axis, including the
triangular skyrmion-lattice phase. In the vicinity of the skyrmion phase, we
performed extensive SANS measurements to unravel a field-induced incommensurate
phase (IC-2 state). We discuss the possibility of anisotropic double-q state as
an alternative spin structure to provisional square skyrmion-lattice state.Comment: 27 pages, 5 figure
- …