93 research outputs found
Experimental tests for the Babu-Zee two-loop model of Majorana neutrino masses
The smallness of the observed neutrino masses might have a radiative origin.
Here we revisit a specific two-loop model of neutrino mass, independently
proposed by Babu and Zee. We point out that current constraints from neutrino
data can be used to derive strict lower limits on the branching ratio of
flavour changing charged lepton decays, such as .
Non-observation of Br() at the level of would rule
out singly charged scalar masses smaller than 590 GeV (5.04 TeV) in case of
normal (inverse) neutrino mass hierarchy. Conversely, decay branching ratios of
the non-standard scalars of the model can be fixed by the measured neutrino
angles (and mass scale). Thus, if the scalars of the model are light enough to
be produced at the LHC or ILC, measuring their decay properties would serve as
a direct test of the model as the origin of neutrino masses.Comment: 14 pages, 16 figure
From Double Chooz to Triple Chooz - Neutrino Physics at the Chooz Reactor Complex
We discuss the potential of the proposed Double Chooz reactor experiment to
measure the neutrino mixing angle . We especially consider
systematical uncertainties and their partial cancellation in a near and far
detector operation, and we discuss implications of a delayed near detector
startup. Furthermore, we introduce Triple Chooz, which is a possible upgrade
scenario assuming a second, larger far detector, which could start data taking
in an existing cavern five years after the first far detector. We review the
role of the Chooz reactor experiments in the global context of future neutrino
beam experiments. We find that both Double Chooz and Triple Chooz can play a
leading role in the search for a finite value of . Double
Chooz could achieve a sensitivity limit of at the
90%~confidence level after 5~years while the Triple Chooz setup could give a
sensitivity below .Comment: 18 pages, 6 figure
Neutrino masses and mixing
Status of determination of the neutrino masses and mixing is formulated and
possible uncertainties, especially due to presence of the sterile neutrinos,
are discussed. The data hint an existence of special ``neutrino'' symmetries.
If not accidental these symmetries have profound implications and can
substantially change the unification program. The key issue on the way to
underlying physics is relations between quarks and leptons. The approximate
quark-lepton symmetry or universality can be reconciled with strongly different
patterns of masses and mixings due to nearly singular character of the mass
matrices or screening of the Dirac structures in the double see-saw mechanism.Comment: 11 pages, latex, iopams.sty, 3 figures. Invited talk given at
TAUP2005, September 10 - 14, 2005, Zaragoza, Spai
Reactor monitoring and safeguards using antineutrino detectors
Nuclear reactors have served as the antineutrino source for many fundamental
physics experiments. The techniques developed by these experiments make it
possible to use these very weakly interacting particles for a practical
purpose. The large flux of antineutrinos that leaves a reactor carries
information about two quantities of interest for safeguards: the reactor power
and fissile inventory. Measurements made with antineutrino detectors could
therefore offer an alternative means for verifying the power history and
fissile inventory of a reactors, as part of International Atomic Energy Agency
(IAEA) and other reactor safeguards regimes. Several efforts to develop this
monitoring technique are underway across the globe.Comment: 6 pages, 4 figures, Proceedings of XXIII International Conference on
Neutrino Physics and Astrophysics (Neutrino 2008); v2: minor additions to
reference
R2D2 - a symmetric measurement of reactor neutrinos free of systematical errors
We discuss a symmetric setup for a reactor neutrino oscillation experiment
consisting of two reactors separated by about 1 km, and two symmetrically
placed detectors, one close to each reactor. We show that such a configuration
allows a determination of which is essentially free of
systematical errors, if it is possible to separate the contributions of the two
reactors in each detector sufficiently. This can be achieved either by
considering data when in an alternating way only one reactor is running or by
directional sensitivity obtained from the neutron displacement in the detector.Comment: 11 pages, 3 figures, clarifications added, some numbers in relation
with the neutron displacement corrected, version to appear in JHE
Damping signatures in future neutrino oscillation experiments
We discuss the phenomenology of damping signatures in the neutrino
oscillation probabilities, where either the oscillating terms or the
probabilities can be damped. This approach is a possibility for tests of
non-oscillation effects in future neutrino oscillation experiments, where we
mainly focus on reactor and long-baseline experiments. We extensively motivate
different damping signatures due to small corrections by neutrino decoherence,
neutrino decay, oscillations into sterile neutrinos, or other mechanisms, and
classify these signatures according to their energy (spectral) dependencies. We
demonstrate, at the example of short baseline reactor experiments, that damping
can severely alter the interpretation of results, e.g., it could fake a value
of smaller than the one provided by Nature. In addition,
we demonstrate how a neutrino factory could constrain different damping models
with emphasis on how these different models could be distinguished, i.e., how
easily the actual non-oscillation effects could be identified. We find that the
damping models cluster in different categories, which can be much better
distinguished from each other than models within the same cluster.Comment: 33 pages, 5 figures, LaTeX. Final version published in JHE
Reactor Neutrino Experiments with a Large Liquid Scintillator Detector
We discuss several new ideas for reactor neutrino oscillation experiments
with a Large Liquid Scintillator Detector. We consider two different scenarios
for a measurement of the small mixing angle with a mobile
source: a nuclear-powered ship, such as a submarine or an
icebreaker, and a land-based scenario with a mobile reactor. The former setup
can achieve a sensitivity to at the 90%
confidence level, while the latter performs only slightly better than Double
Chooz. Furthermore, we study the precision that can be achieved for the solar
parameters, and , with a mobile reactor
and with a conventional power station. With the mobile reactor, a precision
slightly better than from current global fit data is possible, while with a
power reactor, the accuracy can be reduced to less than 1%. Such a precision is
crucial for testing theoretical models, e.g. quark-lepton complementarity.Comment: 18 pages, 3 figures, 2 tables, revised version, to appear in JHEP,
Fig. 1 extended, Formula added, minor changes, results unchange
Applying Bayesian Neural Networks to Separate Neutrino Events from Backgrounds in Reactor Neutrino Experiments
A toy detector has been designed to simulate central detectors in reactor
neutrino experiments in the paper. The samples of neutrino events and three
major backgrounds from the Monte-Carlo simulation of the toy detector are
generated in the signal region. The Bayesian Neural Networks(BNN) are applied
to separate neutrino events from backgrounds in reactor neutrino experiments.
As a result, the most neutrino events and uncorrelated background events in the
signal region can be identified with BNN, and the part events each of the fast
neutron and He/Li backgrounds in the signal region can be
identified with BNN. Then, the signal to noise ratio in the signal region is
enhanced with BNN. The neutrino discrimination increases with the increase of
the neutrino rate in the training sample. However, the background
discriminations decrease with the decrease of the background rate in the
training sample.Comment: 9 pages, 1 figures, 1 tabl
First hint for CP violation in neutrino oscillations from upcoming superbeam and reactor experiments
We compare the physics potential of the upcoming neutrino oscillation
experiments Daya Bay, Double Chooz, NOvA, RENO, and T2K based on their
anticipated nominal luminosities and schedules. After discussing the
sensitivity to theta_{13} and the leading atmospheric parameters, we
demonstrate that leptonic CP violation will hardly be measurable without
upgrades of the T2K and NOvA proton drivers, even if theta_{13} is large. In
the presence of the proton drivers, the fast track to hints for CP violation
requires communication between the T2K and NOvA collaborations in terms of a
mutual synchronization of their neutrino-antineutrino run plans. Even in that
case, upgrades will only discover CP violation in a relatively small part of
the parameter space at the 3 sigma confidence level, while 90% confidence level
hints will most likely be obtained. Therefore, we conclude that a new facility
will be required if the goal is to obtain a significant result with high
probability.Comment: 27 pages, 12 figure
Future Precision Neutrino Oscillation Experiments and Theoretical Implications
Future neutrino oscillation experiments will lead to precision measurements
of neutrino mass splittings and mixings. The flavour structure of the lepton
sector will therefore at some point become better known than that of the quark
sector. This article discusses the potential of future oscillation experiments
on the basis of detailed simulations with an emphasis on experiments which can
be done in about ten years. In addition, some theoretical implications for
neutrino mass models will be briefly discussed.Comment: Talk given at Nobel Symposium 2004: Neutrino Physics, Haga Slott,
Enkoping, Sweden, 19-24 Aug 200
- …