16,026 research outputs found

    Percolation study for the capillary ascent of a liquid through a granular soil

    Full text link
    Capillary rise plays a crucial role in the construction of road embankments in flood zones, where hydrophobic compounds are added to the soil to suppress the rising of water and avoid possible damage of the pavement. Water rises through liquid bridges, menisci and trimers, whose width and connectivity depends on the maximal half-length {\lambda} of the capillary bridges among grains. Low {\lambda} generate a disconnect structure, with small clusters everywhere. On the contrary, for high {\lambda}, create a percolating cluster of trimers and enclosed volumes that form a natural path for capillary rise. Hereby, we study the percolation transition of this geometric structure as a function of {\lambda} on a granular media of monodisperse spheres in a random close packing. We determine both the percolating threshold {\lambda}_{c} = (0.049 \pm 0.004)R (with R the radius of the granular spheres), and the critical exponent of the correlation length {\nu} = (0.830 \pm 0.051), suggesting that the percolation transition falls into the universality class of ordinary percolation

    Zero-temperature TAP equations for the Ghatak-Sherrington model

    Full text link
    The zero-temperature TAP equations for the spin-1 Ghatak-Sherrington model are investigated. The spin-glass energy density (ground state) is determined as a function of the anisotropy crystal field DD for a large number of spins. This allows us to locate a first-order transition between the spin-glass and paramagnetic phases within a good accuracy. The total number of solutions is also determined as a function of DD.Comment: 11 pages, 2 ps figures include

    Hubbard-model description of the high-energy spin-spectral-weight distribution in La(2)CuO(4)

    Full text link
    The spectral-weight distribution in recent neutron scattering experiments on the parent compound La2_2CuO4_4 (LCO), which are limited in energy range to about 450\,meV, is studied in the framework of the Hubbard model on the square lattice with effective nearest-neighbor transfer integral tt and on-site repulsion UU. Our study combines a number of numerical and theoretical approaches, including, in addition to standard treatments, density matrix renormalization group calculations for Hubbard cylinders and a suitable spinon approach for the spin excitations. Our results confirm that the U/8tU/8t magnitude suitable to LCO corresponds to intermediate UU values smaller than the bandwidth 8t8t, which we estimate to be 8t≈2.368t \approx 2.36 eV for U/8t≈0.76U/8t\approx 0.76. This confirms the unsuitability of the conventional linear spin-wave theory. Our theoretical studies provide evidence for the occurrence of ground-state d-wave spinon pairing in the half-filled Hubbard model on the square lattice. This pairing applies only to the rotated-electron spin degrees of freedom, but it could play a role in a possible electron d-wave pairing formation upon hole doping. We find that the higher-energy spin spectral weight extends to about 566 meV and is located at and near the momentum [π,π][\pi,\pi]. The continuum weight energy-integrated intensity vanishes or is extremely small at momentum [π,0][\pi,0]. This behavior of this intensity is consistent with that of the spin waves observed in recent high-energy neutron scattering experiments, which are damped at the momentum [π,0][\pi,0]. We suggest that future LCO neutron scattering experiments scan the energies between 450 meV and 566 meV and momenta around [π,π][\pi,\pi].Comment: 23 pages, 5 figure

    Emergent Nesting of the Fermi Surface from Local-Moment Description of Iron-Pnictide High-Tc Superconductors

    Get PDF
    We uncover the low-energy spectrum of a t-J model for electrons on a square lattice of spin-1 iron atoms with 3dxz and 3dyz orbital character by applying Schwinger-boson-slave-fermion mean-field theory and by exact diagonalization of one hole roaming over a 4 x 4 x 2 lattice. Hopping matrix elements are set to produce hole bands centered at zero two-dimensional (2D) momentum in the free-electron limit. Holes can propagate coherently in the t-J model below a threshold Hund coupling when long-range antiferromagnetic order across the d+ = 3d(x+iy)z and d- = 3d(x-iy)z orbitals is established by magnetic frustration that is off-diagonal in the orbital indices. This leads to two hole-pocket Fermi surfaces centered at zero 2D momentum. Proximity to a commensurate spin-density wave (cSDW) that exists above the threshold Hund coupling results in emergent Fermi surface pockets about cSDW momenta at a quantum critical point (QCP). This motivates the introduction of a new Gutzwiller wavefunction for a cSDW metal state. Study of the spin-fluctuation spectrum at cSDW momenta indicates that the dispersion of the nested band of one-particle states that emerges is electron-type. Increasing Hund coupling past the QCP can push the hole-pocket Fermi surfaces centered at zero 2D momentum below the Fermi energy level, in agreement with recent determinations of the electronic structure of mono-layer iron-selenide superconductors.Comment: 41 pages, 12 figures, published versio
    • …
    corecore