298 research outputs found

    Enzymatic degradation of starch thermoplastic blends using samples of different thickness

    Get PDF
    The material studied was a thermoplastic blend of corn starch with a poly(ethylene-vinyl alcohol) copolymer, SEVA-C. The influence of both the material’s exposed surface and enzyme concentration on degradation kinetics was studied. As α-amylase is present in the blood plasma, experiments were performed, varying the material thickness and the α-amylase between 50 and 100 units/l, at 37°C, lasting up to 90 days. Four different batches using SEVA-C and starch samples of different thickness were performed. The positive correlation between degradation rate and the exposed material surface was confirmed, since thin films with larger exposed surfaces were degraded faster than thick square plates having the same total mass. The degradation extent depends on the total amount of amorphous starch present in the formulation rather than on the amount of enzyme used and the minimum thickness to ensure maximum degradation was estimated to be close to 0.25 mm

    Degradation studies of hydrophilic, partially degradable and bioactive cements (HDBCs) incorporating chemically modified starch

    Get PDF
    The degradation rate in Hydrophilic, Degradable and Bioactive Cements (HDBCs) containing starch/cellulose acetate blends (SCA) is still low. In order to increase degradation, higher amounts of starch are required to exceed the percolation threshold. In this work, gelatinization, acetylation and methacrylation of corn starch were performed and assessed as candidates to replace SCA in HDBCs. Formulations containing methacrylated starch were prepared with different molar ratios of 2-hydroxyethyl methacrylate and methyl methacrylate in the liquid component and the amount of residual monomer released into water was evaluated. The concentration of reducing sugars, percentage of weight loss and morphologic analyses after degradation all confirmed increased degradation of HDBC with alpha-amylase, with the appearance of pores and voids from enzymatic action. Methacrylated starch therefore is a better alternative to be used as the solid component of HDBC then SCA, since it leads to the formation of cements with a lower release of toxic monomers and more prone to hydrolytic degradation while keeping the other advantages of HDBCs.The authors acknowledge to Foundation for Science and Technology (FCT), who supported this study through funds from project Concept2Cement (POCTI/CTM/60735/2004)
    corecore