10,385 research outputs found

    Study of radio resource sharing for future mobile WiMAX applications with relays

    Get PDF

    Performance evaluation of mobile WiMAX with MIMO and relay extensions

    Get PDF

    Molecular production at a wide Feshbach resonance in Fermi-gas of cooled atoms

    Full text link
    The problem of molecular production from degenerate gas of fermions at a wide Feshbach resonance, in a single-mode approximation, is reduced to the linear Landau-Zener problem for operators. The strong interaction leads to significant renormalization of the gap between adiabatic levels. In contrast to static problem the close vicinity of exact resonance does not play substantial role. Two main physical results of our theory is the high sensitivity of molecular production to the initial value of magnetic field and generation of a large BCS condensate distributed over a broad range of momenta in inverse process of the molecule dissociation.Comment: 4 pages, no figure

    Low complexity synchronisation, equalisation and diversity combining for home-based Hiperlan/1 transceivers

    Get PDF

    Performance evaluation of a high frequency ATM wireless access system using directional antennas

    Get PDF

    Overview of the AWACS testbed

    Get PDF

    Multi-scale simulation of the nano-metric cutting process

    Get PDF
    Molecular dynamics (MD) simulation and the finite element (FE) method are two popular numerical techniques for the simulation of machining processes. The two methods have their own strengths and limitations. MD simulation can cover the phenomena occurring at nano-metric scale but is limited by the computational cost and capacity, whilst the FE method is suitable for modelling meso- to macro-scale machining and for simulating macro-parameters, such as the temperature in a cutting zone, the stress/strain distribution and cutting forces, etc. With the successful application of multi-scale simulations in many research fields, the application of simulation to the machining processes is emerging, particularly in relation to machined surface generation and integrity formation, i.e. the machined surface roughness, residual stress, micro-hardness, microstructure and fatigue. Based on the quasi-continuum (QC) method, the multi-scale simulation of nano-metric cutting has been proposed. Cutting simulations are performed on single-crystal aluminium to investigate the chip formation, generation and propagation of the material dislocation during the cutting process. In addition, the effect of the tool rake angle on the cutting force and internal stress under the workpiece surface is investigated: The cutting force and internal stress in the workpiece material decrease with the increase of the rake angle. Finally, to ease multi-scale modelling and its simulation steps and to increase their speed, a computationally efficient MATLAB-based programme has been developed, which facilitates the geometrical modelling of cutting, the simulation conditions, the implementation of simulation and the analysis of results within a unified integrated virtual-simulation environment
    • …
    corecore