27 research outputs found

    Cyr61/CCN1 Displays High-Affinity Binding to the Somatomedin B 1–44 Domain of Vitronectin

    Get PDF
    OV) family of extracellular-associated (matricellular) proteins that present four distinct functional modules, namely insulin-like growth factor binding protein (IGFBP), von Willebrand factor type C (vWF), thrombospondin type 1 (TSP), and C-terminal growth factor cysteine knot (CT) domain. While heparin sulphate proteoglycans reportedly mediate the interaction of Cyr61 with the matrix and cell surface, the role of other extracellular associated proteins has not been revealed. at high concentrations attenuate Cyr61 binding to immobilized VTNC, while monomeric VTNC was ineffective. Therefore, immobilization of VTNC exposes cryptic epitopes that recognize Cyr61 with high affinity, as reported for a number of antibodies, β-endorphin, and other molecules. domain suggests that VTNC represent a point of anchorage for CCN family members to the matrix. Results are discussed in the context of the role of CCN and VTNC in matrix biology and angiogenesis

    Mathematical Modelling of Teachers’ Intention to Participate in Online Training During Covid-19 Lockdown: Evidence from Emerging Economy

    No full text
    Because of lockdown for Covid-19 pandemic online teacher’s training has taken on paramount importance in the academia. Consequently, a key focus of training and education related research has been discovering ways to motivate individuals to engage in more active behavior. This research identifies the factors influencing teachers’ intention to participate in online training. Specifically, we investigated the impact of theory of planned behavior (TPB), ability, opportunity and motivation.  Data were collected from 142 respondents using a structured questionnaire from four different universities of Bangladesh. The result suggests high level of impact on teacher’s intention by perceived behavior control, motivation and ability. Our developed research model empirically advances the TPB model with ability, opportunity and motivation

    Gap Junctions in the Control of Vascular Function

    No full text
    Direct intercellular communication via gap junctions is critical in the control and coordination of vascular function. In the cardiovascular system, gap junctions are made up of one or more of four connexin proteins: Cx37, Cx40, Cx43, and Cx45. The expression of more than one gap-junction protein in the vasculature is not redundant. Rather, vascular connexins work in concert, first during the development of the cardiovascular system, and then in integrating smooth muscle and endothelial cell function, and in coordinating cell function along the length of the vessel wall. In addition, connexin-based channels have emerged as an important signaling pathway in the astrocyte-mediated neurovascular coupling. Direct electrical communication between endothelial cells and vascular smooth muscle cells via gap junctions is thought to play a relevant role in the control of vasomotor tone, providing the signaling pathway known as endothelium-derived hyperpolarizing factor (EDHF). Consistent with the importance of gap junctions in the regulation of vasomotor tone and arterial blood pressure, the expression of connexins is altered in diseases associated with vascular complications. In this review, we discuss the participation of connexin-based channels in the control of vascular function in physiologic and pathologic conditions, with a special emphasis on hypertension and diabetes. Antioxid. Redox Signal. 11, 251–266

    Oral polymorphonuclear neutrophil contributes to oral health

    Get PDF
    Purpose of Review: Oral health is maintained in a dynamic equilibrium between the host immunity and the oral microbiome. Oral polymorphonuclear neutrophils (oPMNs) are important innate immune cells in the oral cavity. Recent Findings: The oPMNs play a co-controlling part in the maintenance of oral equilibrium. In human saliva, the oPMNs integrity is preserved, and their function remains unaffected. In general, oPMNs are in a higher state of baseline activation compared to peripheral PMNs. However, in periodontitis, the oPMNs' activation state can result in excessive release of damaging molecules in the extracellular environment. Summary: The presence of oPMNs may unwittingly negatively impact the integrity of the oral tissues. While most of the oPMN functions occur intracellularly, release of their potent active mediators into the extracellular environment may jeopardize oral homeostasis and its integrity. The dual nature of oPMNs, both beneficial and detrimental, remains a challenging and understudied topic

    Activation of G proteins by GIV-GEF is a pivot point for insulin resistance and sensitivity

    No full text
    Insulin resistance (IR) is a metabolic disorder characterized by impaired insulin signaling and cellular glucose uptake. The current paradigm for insulin signaling centers upon the insulin receptor (InsR) and its substrate IRS1; the latter is believed to be the sole conduit for postreceptor signaling. Here we challenge that paradigm and show that GIV/Girdin, a guanidine exchange factor (GEF) for the trimeric G protein Gαi, is another major hierarchical conduit for the metabolic insulin response. By virtue of its ability to directly bind InsR, IRS1, and phosphoinositide 3-kinase, GIV serves as a key hub in the immediate postreceptor level, which coordinately enhances the metabolic insulin response and glucose uptake in myotubes via its GEF function. Site-directed mutagenesis or phosphoinhibition of GIV-GEF by the fatty acid/protein kinase C-theta pathway triggers IR. Insulin sensitizers reverse phosphoinhibition of GIV and reinstate insulin sensitivity. We also provide evidence for such reversible regulation of GIV-GEF in skeletal muscles from patients with IR. Thus GIV is an essential upstream component that couples InsR to G-protein signaling to enhance the metabolic insulin response, and impairment of such coupling triggers IR. We also provide evidence that GIV-GEF serves as therapeutic target for exogenous manipulation of physiological insulin response and reversal of IR in skeletal muscles

    Tumor invasion, proteolysis, and angiogenesis

    No full text
    corecore