1,555 research outputs found

    Loss of PINK1 Increases the Heart's Vulnerability to Ischemia-Reperfusion Injury.

    Get PDF
    Mutations in PTEN inducible kinase-1 (PINK1) induce mitochondrial dysfunction in dopaminergic neurons resulting in an inherited form of Parkinson's disease. Although PINK1 is present in the heart its exact role there is unclear. We hypothesized that PINK1 protects the heart against acute ischemia reperfusion injury (IRI) by preventing mitochondrial dysfunction

    Gamma-Ray Background from Structure Formation in the Intergalactic Medium

    Get PDF
    The universe is filled with a diffuse and isotropic extragalactic background of gamma-ray radiation, containing roughly equal energy flux per decade in photon energy between 3 MeV-100 GeV. The origin of this background is one of the unsolved puzzles in cosmology. Less than a quarter of the gamma-ray flux can be attributed to unresolved discrete sources, but the remainder appears to constitute a truly diffuse background whose origin has hitherto been mysterious. Here we show that the shock waves induced by gravity during the formation of large-scale structure in the intergalactic medium, produce a population of highly-relativistic electrons with a maximum Lorentz factor above 10^7. These electrons scatter a small fraction of the microwave background photons in the present-day universe up to gamma-ray energies, thereby providing the gamma-ray background. The predicted diffuse flux agrees with the observed background over more than four decades in photon energy, and implies a mean cosmological density of baryons which is consistent with Big-Bang nucleosynthesis.Comment: 7 pages, 1 figure. Accepted for publication in Nature. (Press embargo until published.

    Dynamics of a Quantum Phase Transition and Relaxation to a Steady State

    Full text link
    We review recent theoretical work on two closely related issues: excitation of an isolated quantum condensed matter system driven adiabatically across a continuous quantum phase transition or a gapless phase, and apparent relaxation of an excited system after a sudden quench of a parameter in its Hamiltonian. Accordingly the review is divided into two parts. The first part revolves around a quantum version of the Kibble-Zurek mechanism including also phenomena that go beyond this simple paradigm. What they have in common is that excitation of a gapless many-body system scales with a power of the driving rate. The second part attempts a systematic presentation of recent results and conjectures on apparent relaxation of a pure state of an isolated quantum many-body system after its excitation by a sudden quench. This research is motivated in part by recent experimental developments in the physics of ultracold atoms with potential applications in the adiabatic quantum state preparation and quantum computation.Comment: 117 pages; review accepted in Advances in Physic

    Homologous and heterologous desensitization of guanylyl cyclase-B signaling in GH3 somatolactotropes

    Get PDF
    The guanylyl cyclases, GC-A and GC-B, are selective receptors for atrial and C-type natriuretic peptides (ANP and CNP, respectively). In the anterior pituitary, CNP and GC-B are major regulators of cGMP production in gonadotropes and yet mouse models of disrupted CNP and GC-B indicate a potential role in growth hormone secretion. In the current study, we investigate the molecular and pharmacological properties of the CNP/GC-B system in somatotrope lineage cells. Primary rat pituitary and GH3 somatolactotropes expressed functional GC-A and GC-B receptors that had similar EC50 properties in terms of cGMP production. Interestingly, GC-B signaling underwent rapid homologous desensitization in a protein phosphatase 2A (PP2A)-dependent manner. Chronic exposure to either CNP or ANP caused a significant down-regulation of both GC-A- and GC-B-dependent cGMP accumulation in a ligand-specific manner. However, this down-regulation was not accompanied by alterations in the sub-cellular localization of these receptors. Heterologous desensitization of GC-B signaling occurred in GH3 cells following exposure to either sphingosine-1-phosphate or thyrotrophin-releasing hormone (TRH). This heterologous desensitization was protein kinase C (PKC)-dependent, as pre-treatment with GF109203X prevented the effect of TRH on CNP/GC-B signaling. Collectively, these data indicate common and distinct properties of particulate guanylyl cyclase receptors in somatotropes and reveal that independent mechanisms of homologous and heterologous desensitization occur involving either PP2A or PKC. Guanylyl cyclase receptors thus represent potential novel therapeutic targets for treating growth-hormone-associated disorders

    DJ-1 protects against cell death following acute cardiac ischemia-reperfusion injury.

    Get PDF
    Novel therapeutic targets are required to protect the heart against cell death from acute ischemia-reperfusion injury (IRI). Mutations in the DJ-1 (PARK7) gene in dopaminergic neurons induce mitochondrial dysfunction and a genetic form of Parkinson's disease. Genetic ablation of DJ-1 renders the brain more susceptible to cell death following ischemia-reperfusion in a model of stroke. Although DJ-1 is present in the heart, its role there is currently unclear. We sought to investigate whether mitochondrial DJ-1 may protect the heart against cell death from acute IRI by preventing mitochondrial dysfunction. Overexpression of DJ-1 in HL-1 cardiac cells conferred the following beneficial effects: reduced cell death following simulated IRI (30.4±4.7% with DJ-1 versus 52.9±4.7% in control; n=5, P<0.05); delayed mitochondrial permeability transition pore (MPTP) opening (a critical mediator of cell death) (260±33 s with DJ-1 versus 121±12 s in control; n=6, P<0.05); and induction of mitochondrial elongation (81.3±2.5% with DJ-1 versus 62.0±2.8% in control; n=6 cells, P<0.05). These beneficial effects of DJ-1 were absent in cells expressing the non-functional DJ-1(L166P) and DJ-1(Cys106A) mutants. Adult mice devoid of DJ-1 (KO) were found to be more susceptible to cell death from in vivo IRI with larger myocardial infarct sizes (50.9±3.5% DJ-1 KO versus 41.1±2.5% in DJ-1 WT; n≥7, P<0.05) and resistant to cardioprotection by ischemic preconditioning. DJ-1 KO hearts showed increased mitochondrial fragmentation on electron microscopy, although there were no differences in calcium-induced MPTP opening, mitochondrial respiratory function or myocardial ATP levels. We demonstrate that loss of DJ-1 protects the heart from acute IRI cell death by preventing mitochondrial dysfunction. We propose that DJ-1 may represent a novel therapeutic target for cardioprotection

    Effect of aqueous extract of Tinospora cordifolia on functions of peritoneal macrophages isolated from CCl4 intoxicated male albino mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The current practice of ingesting phytochemicals for supporting the immune system or fighting infections is based on centuries-old tradition. Macrophages are involved at all the stages of an immune response. The present study focuses on the immunostimulant properties of <it>Tinospora cordifolia </it>extract that are exerted on circulating macrophages isolated from CCl<sub>4 </sub>(0.5 ml/kg body weight) intoxicated male albino mice.</p> <p>Methods</p> <p>Apart from damaging the liver system, carbon tetrachloride also inhibits macrophage functions thus, creating an immunocompromised state, as is evident from the present study. Such cell functions include cell morphology, adhesion property, phagocytosis, enzyme release (myeloperoxidase or MPO), nitric oxide (NO) release, intracellular survival of ingested bacteria and DNA fragmentation in peritoneal macrophages isolated from these immunocompromised mice. <it>T. cordifolia </it>extract was tested for acute toxicity at the given dose (150 mg/kg body weight) by lactate dehydrogenase (LDH) assay.</p> <p>Results</p> <p>The number of morphologically altered macrophages was increased in mice exposed to CCl<sub>4</sub>. Administration of CCl<sub>4 </sub>(i.p.) also reduced the phagocytosis, cell adhesion, MPO release, NO release properties of circulating macrophages of mice. The DNA fragmentation of peritoneal macrophages was observed to be higher in CCl<sub>4 </sub>intoxicated mice. The bacterial killing capacity of peritoneal macrophages was also adversely affected by CCl<sub>4. </sub>However oral administration of aqueous fraction of <it>Tinospora cordifolia </it>stem parts at a dose of 40 mg/kg body weight (<it>in vivo</it>) in CCl<sub>4 </sub>exposed mice ameliorated the effect of CCl<sub>4</sub>, as the percentage of morphologically altered macrophages, phagocytosis activity, cell adhesion, MPO release, NO release, DNA fragmentation and intracellular killing capacity of CCl<sub>4 </sub>intoxicated peritoneal macrophages came closer to those of the control group. No acute toxicity was identified in oral administration of the aqueous extract of <it>Tinospora cordifolia </it>at a dose of 150 mg/kg body weight.</p> <p>Conclusion</p> <p>From our findings it can be suggested that, polar fractions of <it>Tinospora cordifolia </it>stem parts contain major bioactive compounds, which directly act on peritoneal macrophages and have been found to boost the non-specific host defenses of the immune system. However, the molecular mechanism of this activity of <it>Tinospora cordifolia </it>on immune functions needs to be elucidated.</p

    MSMEG_2731, an Uncharacterized Nucleic Acid Binding Protein from Mycobacterium smegmatis, Physically Interacts with RPS1

    Get PDF
    While the M. smegmatis genome has been sequenced, only a small portion of the genes have been characterized experimentally. Here, we purify and characterize MSMEG_2731, a conserved hypothetical alanine and arginine rich M. smegmatis protein. Using ultracentrifugation, we show that MSMEG_2731 is a monomer in vitro. MSMEG_2731 exists at a steady level throughout the M. smegmatis life-cycle. Combining results from pull-down techniques and LS-MS/MS, we show that MSMEG_2731 interacts with ribosomal protein S1. The existence of this interaction was confirmed by co-immunoprecipitation. We also show that MSMEG_2731 can bind ssDNA, dsDNA and RNA in vitro. Based on the interactions of MSMEG_2731 with RPS1 and RNA, we propose that MSMEG_2731 is involved in the transcription-translation process in vivo

    Renal artery stenosis-when to screen, what to stent?

    Get PDF
    Renal artery stensosis (RAS) continues to be a problem for clinicians, with no clear consensus on how to investigate and assess the clinical significance of stenotic lesions and manage the findings. RAS caused by fibromuscular dysplasia is probably commoner than previously appreciated, should be actively looked for in younger hypertensive patients and can be managed successfully with angioplasty. Atheromatous RAS is associated with increased incidence of cardiovascular events and increased cardiovascular mortality, and is likely to be seen with increasing frequency. Evidence from large clinical trials has led clinicians away from recommending interventional revascularisation towards aggressive medical management. There is now interest in looking more closely at patient selection for intervention, with focus on intervening only in patients with the highest-risk presentations such as flash pulmonary oedema, rapidly declining renal function and severe resistant hypertension. The potential benefits in terms of improving hard cardiovascular outcomes may outweigh the risks of intervention in this group, and further research is needed

    Comparative efficacy of two microdoses of a potentized homoeopathic drug, Cadmium Sulphoricum, in reducing genotoxic effects produced by cadmium chloride in mice: a time course study

    Get PDF
    BACKGROUND: Cadmium poisoning in the environment has assumed an alarming problem in recent years. Effective antimutagenic agents which can reverse or combat cadmium induced genotoxicity in mice have not yet been reported. Therefore, in the present study, following the homeopathic principle of "like cures like", we tested the efficacy of two potencies of a homeopathic drug, Cadmium Sulphoricum (Cad Sulph), in reducing the genotoxic effects of Cadmium chloride in mice. Another objective was to determine the relative efficacy of three administrative modes, i.e. pre-, post- and combined pre and post-feeding of the homeopathic drugs. For this, healthy mice, Mus musculus, were intraperitoneally injected with 0.008% solution of CdCl(2) @ 1 ml/100 gm of body wt (i.e. 0.8 mcg/gm of bw), and assessed for the genotoxic effects through such studies as chromosome aberrations (CA), micronucleated erythrocytes (MNE), mitotic index (MI) and sperm head anomaly (SHA), keeping suitable succussed alcohol fed (positive) and CdCl(2) untreated normal (negative) controls. The CdCl(2) treated mice were divided into 3 subgroups, which were orally administered with the drug prior to, after and both prior to and after injection of CdCl(2) at specific fixation intervals and their genotoxic effects were analyzed. RESULTS: While the CA, MNE and SHA were reduced in the drug fed series as compared to their respective controls, the MI showed an apparent increase. The combined pre- and post-feeding of Cad Sulph showed maximum reduction of the genotoxic effects. CONCLUSIONS: Both Cad Sulph-30 and 200 were able to combat cadmium induced genotoxic effects in mice and that combined pre- and post-feeding mode of administration was found to be most effective in reducing the genotoxic effect of CdCl(2) followed by the post-feeding mode

    Unambiguous observation of blocked states reveals altered, blocker-induced, cardiac ryanodine receptor gating

    Get PDF
    The flow of ions through membrane channels is precisely regulated by gates. The architecture and function of these elements have been studied extensively, shedding light on the mechanisms underlying gating. Recent investigations have focused on ion occupancy of the channel’s selectivity filter and its ability to alter gating, with most studies involving prokaryotic K+ channels. Some studies used large quaternary ammonium blocker molecules to examine the effects of altered ionic flux on gating. However, the absence of blocking events that are visibly distinct from closing events in K+ channels makes unambiguous interpretation of data from single channel recordings difficult. In this study, the large K+ conductance of the RyR2 channel permits direct observation of blocking events as distinct subconductance states and for the first time demonstrates the differential effects of blocker molecules on channel gating. This experimental platform provides valuable insights into mechanisms of blocker-induced modulation of ion channel gating
    corecore