18 research outputs found

    Plasma and cellular fibronectin: distinct and independent functions during tissue repair

    Get PDF
    Fibronectin (FN) is a ubiquitous extracellular matrix (ECM) glycoprotein that plays vital roles during tissue repair. The plasma form of FN circulates in the blood, and upon tissue injury, is incorporated into fibrin clots to exert effects on platelet function and to mediate hemostasis. Cellular FN is then synthesized and assembled by cells as they migrate into the clot to reconstitute damaged tissue. The assembly of FN into a complex three-dimensional matrix during physiological repair plays a key role not only as a structural scaffold, but also as a regulator of cell function during this stage of tissue repair. FN fibrillogenesis is a complex, stepwise process that is strictly regulated by a multitude of factors. During fibrosis, there is excessive deposition of ECM, of which FN is one of the major components. Aberrant FN-matrix assembly is a major contributing factor to the switch from normal tissue repair to misregulated fibrosis. Understanding the mechanisms involved in FN assembly and how these interplay with cellular, fibrotic and immune responses may reveal targets for the future development of therapies to regulate aberrant tissue-repair processes

    An experimental and modeling study of synthesis, consolidation and aging behavior of AA2014 composite reinforced by TiB2 via powder metallurgy method

    No full text
    Aluminum 2014 alloy composite reinforced with TiB2 particulates with different volume% of TiB2 (5, 10 and 15%) has been successfully synthesized by P/M route. The composite powders were consolidated by cold uniaxial compaction pressure followed by sintering at 590 °C in N2 atmosphere. The Al 2014–TiB2 composites were aged at 160 °C between 0 and 8 h followed by microstructural characterization and hardness evaluation. Scheil cooling and equilibrium calculations were performed using FactSage for qualitative understanding of the microstructural evolution during sintering and aging operations. In addition, the thermo-physical properties such as hardness, density and transverse rupture strength of the sintered samples were evaluated.Rana Pratap Singh, Gaurav Kumar Gupta and Manas Paliwa

    Transforming Growth Factor-β and Breast Cancer

    No full text
    corecore