44 research outputs found

    Potential of a cyclone prototype spacer to improve in vitro dry powder delivery

    Get PDF
    Copyright The Author(s) 2013. This article is published with open access at Springerlink.com. This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are creditedPurpose: Low inspiratory force in patients with lung disease is associated with poor deagglomeration and high throat deposition when using dry powder inhalers (DPIs). The potential of two reverse flow cyclone prototypes as spacers for commercial carrierbased DPIs was investigated. Methods: Cyclohaler®, Accuhaler® and Easyhaler® were tested with and without the spacers between 30-60 Lmin-1. Deposition of particles in the next generation impactor and within the devices was determined by high performance liquid chromatography. Results: Reduced induction port deposition of the emitted particles from the cyclones was observed due to the high retention of the drug within the spacers (e.g. salbutamol sulphate (SS): 67.89 ± 6.51 % at 30 Lmin-1 in Cheng 1). Fine particle fractions of aerosol as emitted from the cyclones were substantially higher than the DPIs alone. Moreover, the aerodynamic diameters of particles emitted from the cyclones were halved compared to the DPIs alone (e.g. SS from the Cyclohaler® at 4 kPa: 1.08 ± 0.05 μm vs. 3.00 ± 0.12 μm, with and without Cheng 2, respectively) and unaltered with increased flow rates. Conclusion: This work has shown the potential of employing a cyclone spacer for commercial carrier-based DPIs to improve inhaled drug delivery.Peer reviewe

    Occupational concerns associated with regular use of microscope

    Full text link
    Objectives: Microscope work can be strenuous both to the visual system and the musculoskeletal system. Lack of awareness or indifference towards health issues may result in microscope users becoming victim to many occupational hazards. Our objective was to understand the occupational problems associated with regular use of microscope, awareness regarding the hazards, attitude and practice of microscope users towards the problems and preventive strategies. Material and Methods: A questionnaire based survey done on 50 professionals and technicians who used microscope regularly in pathology, microbiology, hematology and cytology laboratories. Results: Sixty two percent of subjects declared that they were suffering from musculoskeletal problems, most common locations being neck and back. Maximum prevalence of musculoskeletal problems was noted in those using microscope for 11–15 years and for more than 30 h/week. Sixty two percent of subjects were aware of workplace ergonomics. Fifty six percent of microscope users took regular short breaks for stretching exercises and 58% took visual breaks every 15–30 min in between microscope use sessions. As many as 94% subjects reported some form of visual problem. Fourty four percent of microscope users felt stressed with long working hours on microscope. Conclusions: The most common occupational concerns of microscope users were musculoskeletal problems of neck and back regions, eye fatigue, aggravation of ametropia, headache, stress due to long working hours and anxiety during or after microscope use. There is an immediate need for increasing awareness about the various occupational hazards and their irreversible effects to prevent them

    Construction of a ground-motion logic tree through host-to-target region adjustments applied to an adaptable ground-motion prediction model

    No full text
    The purpose of a median ground‐motion logic tree is to capture the center, body, and range of possible ground‐motion amplitudes for each earthquake scenario considered in a seismic hazard analysis. For site‐specific hazard analyses, the traditional approach of populating the logic tree branches with ground‐motion prediction models (GMPMs) selected and weighted on the basis of vaguely defined applicability to the target region is rapidly being abandoned in favor of the backbone GMPM approach. In this approach, the selected backbone model is first adjusted to match the earthquake source and path characteristics of the target region, and then it is separately adjusted to account for the site‐specific geotechnical profile. For a GMPM to be amenable to such host‐to‐target adjustments, the magnitude scaling of response spectral ordinates should be consistent with the theoretical scaling of Fourier amplitude spectra. In addition, the influence of individual source and path parameters should be clearly distinguished in the model to allow the adjustments to be applied individually, and reliable estimates of the source and path parameters from the host region of the GMPM should be available, as should a reference rock profile for the model. The NGA‐West2 project GMPM of Chiou and Youngs (2014; hereafter, CY14) has been identified as a very suitable backbone model. Moreover, rather than adopting generic source and path parameters and a rock site profile from the host region for CY14, which is not easily defined because the data from which it was derived came from several geographical locations, recent studies have inverted the model to obtain a CY14‐consistent reference rock profile and CY14‐compatible source and path parameters. Using these host‐region characteristics, this study illustrates the process of building a ground‐motion logic tree through the sequential application of multiple host‐to‐target‐region adjustments, each represented by a node on the logic tree to achieve a tractable model for the total epistemic uncertainty
    corecore