8 research outputs found

    LPS levels in root canals after the use of ozone gas and high frequency electrical pulses

    Get PDF
    Abstract The present study aims to verify the effect of ozone gas (OZY® System) and high frequency electric pulse (Endox® System) systems on human root canals previously contaminated with Escherichia colilipopolysaccharide (LPS). Fifty single-rooted teeth had their dental crowns removed and root lengths standardized to 16 mm. The root canals were prepared up to #60 hand K-files and sterilized using gamma radiation with cobalt 60. The specimens were divided into the following five groups (n = 10) based on the disinfection protocol used: OZY® System, one 120-second-pulse (OZY 1p); OZY® System, four 24-second-pulses (OZY 4p); and Endox® System (ENDOX). Contaminated and non-contaminated canals were exposed only to apyrogenic water and used as positive (C+) and negative (C-) controls, respectively. LPS (O55:B55) was administered in all root canals except those belonging to group C-. After performing disinfection, LPS samples were collected from the canals using apyrogenic paper tips. Limulus Amoebocyte Lysate (LAL) was used to quantify the LPS levels, and the data obtained was analyzed using one-way ANOVA. The disinfection protocols used were unable to reduce the LPS levels significantly (p = 0.019). The use of ozone gas and high frequency electric pulses was not effective in eliminating LPS from the root canals

    Overcoming instabilities in Verlet-I/r-RESPA with the mollified impulse method

    Full text link
    Abstract. The primary objective of this paper is to explain the derivation of symplectic mollified Verlet-I/r-RESPA (MOLLY) methods that overcome linear and nonlinear instabilities that arise as numerical artifacts in Verlet-I/r-RESPA. These methods allow for lengthening of the longest time step used in molecular dynamics (MD). We provide evidence that MOLLY methods can take a longest time step that is 50 % greater than that of Verlet-I/r-RESPA, for a given drift, including no drift. A 350 % increase in the timestep is possible using MOLLY with mild Langevin damping while still computing dynamic properties accurately. Furthermore, longer time steps also enhance the scalability of multiple time stepping integrators that use the popular Particle Mesh Ewald method for computing full electrostatics, since the parallel bottleneck of the fast Fourier transform associated with PME is invoked less often. An additional objective of this paper is to give sufficient implementation details for these mollified integrators, so that interested users may implement them into their MD codes, or use the program ProtoMol in which we have implemented these methods
    corecore