5,132 research outputs found

    Photon production at the interaction point of the ILC

    Full text link
    The intense beam-beam effect at the interaction point of the International Linear Collider (ILC) causes large disruption of the beams and the production of photons. These photons, arising dominantly through beamstrahlung emission, are problematic for the machine design as they need to be transported and dumped in a controlled way. In this work, we perform simulations of the beam-beam interaction to predict photon production rates and distributions for the different beam parameters considered at ILC. The results are expressed in terms of a set of cones of excluded power, allowing to define the beam-stay-clear requirements relevant for different cases and contexts. A comparison is also made with theoretical expectations. The suggested photon cone half-opening angles are 0.75 and 0.85 mrad in the horizontal and vertical planes, respectively. These cones cover all machine energies and parameter sets, and include the low power Compton photons

    Theory and phenomenology of non-global logarithms

    Full text link
    We discuss the theoretical treatment of non-global observables, those quantities that are sensitive only to radiation in a restricted region of phase space, and describe how large `non-global' logarithms arise when we veto the energy flowing into the restricted region. The phenomenological impact of non-global logarithms is then discussed, drawing on examples from event shapes in DIS and energy-flow observables in 2-jet systems. We then describe techniques to reduce the numerical importance of non-global logarithms, looking at clustering algorithms in energy flow observables and the study of associated distribution of multiple observables.Comment: Based on talks presented at the XXXVIIIth Rencontres de Moriond 'QCD and high-energy hadronic interactions', 8 page

    A simple construction of complex equiangular lines

    Full text link
    A set of vectors of equal norm in Cd\mathbb{C}^d represents equiangular lines if the magnitudes of the inner product of every pair of distinct vectors in the set are equal. The maximum size of such a set is d2d^2, and it is conjectured that sets of this maximum size exist in Cd\mathbb{C}^d for every d2d \geq 2. We describe a new construction for maximum-sized sets of equiangular lines, exposing a previously unrecognized connection with Hadamard matrices. The construction produces a maximum-sized set of equiangular lines in dimensions 2, 3 and 8.Comment: 11 pages; minor revisions and comments added in section 1 describing a link to previously known results; correction to Theorem 1 and updates to reference

    Particle tracking in the ILC extraction lines with DIMAD and BDSIM

    Get PDF
    The study of beam transport is of central importance to the design and performance assessment of modern particle accelerators. In this paper, we benchmark two contemporary codes, DIMAD and BDSIM, the latter being a relatively new tracking code built within the framework of GEANT4. We consider both the 20 mrad and 2 mrad extraction lines of the 500 GeV International Linear Collider (ILC) and we perform particle tracking studies of heavily disrupted post-collision electron beams. We find that the two codes give an almost equivalent description of the beam transport

    Benchmarking of Tracking Codes (BDSIM/DIMAD) using the ILC Extraction Lines

    Get PDF
    The study of beam transport is of central importance to the design and performance assessment of modern particle accelerators. In this work, we benchmark two contemporary codes - DIMAD and BDSIM, the latter being a relatively new tracking code built within the framework of GEANT4. We consider both the 20 mrad and 2 mrad extraction lines of the International Linear Collider (ILC) and we perform tracking studies of heavily disrupted post-collision electron beams. We find that the two codes mostly give an equivalent description of the beam transport.Comment: Contribution to the Tenth European Particle Accelerator Conference `"EPAC'06'', Edinburgh, United-Kingdom, 26-30 June 200

    Tensor Minkowski Functionals for random fields on the sphere

    Full text link
    We generalize the translation invariant tensor-valued Minkowski Functionals which are defined on two-dimensional flat space to the unit sphere. We apply them to level sets of random fields. The contours enclosing boundaries of level sets of random fields give a spatial distribution of random smooth closed curves. We obtain analytic expressions for the ensemble expectation values for the matrix elements of the tensor-valued Minkowski Functionals for isotropic Gaussian and Rayleigh fields. We elucidate the way in which the elements of the tensor Minkowski Functionals encode information about the nature and statistical isotropy (or departure from isotropy) of the field. We then implement our method to compute the tensor-valued Minkowski Functionals numerically and demonstrate how they encode statistical anisotropy and departure from Gaussianity by applying the method to maps of the Galactic foreground emissions from the PLANCK data.Comment: 1+23 pages, 5 figures, Significantly expanded from version 1. To appear in JCA

    Optimization of the e-e- option for the ILC

    Get PDF
    The e-e- running mode is one of the interesting physics options at the International Linear Collider (ILC). The luminosity for e-e- collisions is reduced by the beam-beam effects. The resulting beamstrahlung energy loss and beam-beam deflection angles as function of the vertical transverse offset are different compared to the e+e- collisions. In this paper, the dependence of these observables with the offset for different beam sizes has been analyzed to optimize performances for the e-e- mode, taking into account the requirements of the beam-beam deflection based intra-train feedback system. A first study of the implications for the final focus and extraction line optics is also presented for the cases of the 20 mrad and 2 mrad ILC base line crossing angle geometries

    On the interpretation of lateral manganin gauge stress measurements in polymers

    Get PDF
    Encapsulated wire-element stress gauges enable changes in lateral stress during shock loading to be directly monitored. However, there is substantial debate with regards to interpretation of observed changes in stress behind the shock front; a phenomenon attributed both to changes in material strength and shock- dispersion within the gauge-encapsulation. Here, a pair of novel techniques which both modify or remove the embedding medium where such stress gauges are placed within target materials have been used to try and inform this debate. The behavior of three polymeric materials of differing complexity was considered, namely polystyrene, the commercially important resin transfer moulding RTM 6 resin and a commercially available fat lard. Comparison to the response of embedded gauges has suggested a possible slight decrease in the absolute magnitude of stress. However, changing the encapsulation has no detectable effect on the gradient behind the shock in such polymeric systems

    Achievable Qubit Rates for Quantum Information Wires

    Full text link
    Suppose Alice and Bob have access to two separated regions, respectively, of a system of electrons moving in the presence of a regular one-dimensional lattice of binding atoms. We consider the problem of communicating as much quantum information, as measured by the qubit rate, through this quantum information wire as possible. We describe a protocol whereby Alice and Bob can achieve a qubit rate for these systems which is proportional to N^(-1/3) qubits per unit time, where N is the number of lattice sites. Our protocol also functions equally in the presence of interactions modelled via the t-J and Hubbard models
    corecore