11,732 research outputs found
A mass-balance approach to estimate in-stream processes in a large river
A mass-balance approach was used to estimate in-stream processes related to inorganic nitrogen species (NH4 C, NO2 and NO3 ) in a large river characterized by highly variable hydrological conditions, the Garonne River (south-west France). Studies were conducted in two consecutive reaches of 30 km located downstream of the Toulouse agglomeration (population 760 000, seventh order), impacted by modification of discharge regime and high nitrogen concentrations. The mass-balance was calculated by two methods: the first is based on a variable residence time (VRT) simulated by a one-dimensional (1-D) hydraulic model; the second is a based on a calculation using constant residence time (CRT) evaluated according to hydrographic peaks. In the context of the study, removal of dissolved inorganic nitrogen (DIN) for a reach of 30 km is underestimated by 11% with the CRT method. In sub-reaches, the discrepancy between the two methods led to a 50% overestimation of DIN removal in the upper reach (13 km) and a 43% underestimation in the lower reach (17 km) using the CRT method. The study highlights the importance of residence time determination when using modelling approaches in the assessment of whole stream processes in short-duration mass-balance for a large river under variable hydrological conditions
Environmental assay on the effect of poultry manure application on soil organisms in agroecosystems
This paper reports the effects produced on the organisms of the soil (plants, invertebrates and microorganisms), after the application of two types of poultry manure (sawdust and straw bed) on an agricultural land. The test was made using a terrestrial microcosm, Multi-Species Soil System (MS3) developed in INIA. There was no difference in the germination for any of the three species of plants considered in the study. The biomass was increased in the wheat (Triticum aestivum) coming from ground treated with both kinds of poultry manure. Oilseed rape (Brasica rapa) was not affected and regarding vetch (Vicia sativa) only straw poultry manure showed significant difference. For length only Vicia sativa was affected showing a reduction when straw was exposed to poultry manure. When the effect on invertebrates was studied, we observed a reduction in the number of worms during the test, especially from the ground control (13.7%), higher than in the ground with sawdust poultry manure (6.7%), whereas in the ground with straw poultry manure, there was no reduction. The biomass was affected and at the end of the test it was observed that while the reduction of worms in the ground control was about 48%, the number of those that were in the ground with sawdust poultry manure or straw poultry manure decreased by 41% and 22% respectively. Finally, the effects on microorganisms showed that the enzymatic activities: dehydrogenase (DH) and phosphatase and basal respiration rate increased at the beginning of the test, and the differences were statistically significant compared with the values of the control group. During the test, all these parameters decreased (except DH activities) but they were always higher than in the ground control. This is why it is possible to deduce that the contribution of poultry manure caused an improvement in the conditions of fertilization and also for the soil
Biochar from Pyrolysis of Biosolids for Nutrient Adsorption and Turfgrass Cultivation
At water resource recovery facilities, nutrient removal is often required and energy recovery is an ever-increasing goal. Pyrolysis may be a sustainable process for handling wastewater biosolids because energy can be recovered in the py-gas and py-oil. Additionally, the biochar produced has value as a soil conditioner. The objective of this work was to determine if biochar could be used to adsorb ammonia from biosolids filtrate and subsequently be applied as a soil conditioner to improve grass growth. The maximum carrying capacity of base modified biochar for NH3−N was 5.3 mg/g. Biochar containing adsorbed ammonium and potassium was applied to laboratory planters simulating golf course putting greens to cultivate Kentucky bluegrass. Planters that contained nutrient-laden biochar proliferated at a statistically higher rate than planters that contained biosolids, unmodified biochar, peat, or no additive. Nutrient-laden biochar performed as well as commercial inorganic fertilizer with no statistical difference in growth rates. Biochar from digested biosolids successfully immobilized NH3−N from wastewater and served as a beneficial soil amendment. This process offers a means to recover and recycle nutrients from water resource recovery facilities
Preliminary data set to assess the performance of an outdoor membrane photobioreactor
[EN] This data in brief (DIB) article is related to a Research article entitled 'Optimising an outdoor membrane photobioreactor for tertiary sewage treatment' [1].
Data related to the effect of substrate turbidity, the ammonium concentration at which the culture reaches nitrogen-deplete conditions and the microalgae growth rate under outdoor conditions is provided.
Microalgae growth rates under different substrate turbidity were obtained to assess the reduction of the culture's light availability. Lab-scale experiments showed growth rates reductions of 22-44%. Respirometric tests were carried to know the limiting ammonium concentration in thismicroalgae-basedwastewater treatment system. Growth rates (m) of green microalgae Scenedesmus and Chlorella obtained under outdoor conditions; i.e. 0.40 d(-1) (R-2 = 0.993) and 0.43 d(-1) (R-2 = 0.995), respectively, can be useful to obtain optimum operating conditions of membrane photobioreactor (MPBR).This research work was supported by the Spanish Ministry of Economy and Competitiveness
(MINECO, Projects CTM2014-54980-C2-1-R and CTM2014-54980-C2-2-R) jointly with the European
Regional Development Fund (ERDF), which are gratefully acknowledged. It also received support from
the Spanish Ministry of Education, Culture and Sport via a pre-doctoral FPU fellowship to the first
author (FPU14/05082).Gonzalez-Camejo, J.; Jiménez Benítez, AL.; Ruano, MV.; Robles Martínez, Á.; Barat, R.; Ferrer, J. (2019). Preliminary data set to assess the performance of an outdoor membrane photobioreactor. Data in Brief. 27:1-7. https://doi.org/10.1016/j.dib.2019.104599S172
Efficacy of different antifouling treatments for seawater cooling systems
In an industrial seawater cooling system, the effects of three different antifouling treatments, viz. sodium
hypochlorite (NaClO), aliphatic amines (Mexel1432) and UV radiation, on the characteristics of the fouling formed
were evaluated. For this study a portable pilot plant, as a side-stream monitoring system and seawater cooling
system, was employed. The pilot plant simulated a power plant steam condenser, having four titanium tubes under
different treatment patterns, where fouling progression could be monitored. The nature of the fouling obtained was
chiefly inorganic, showing a clear dependence on the antifouling treatment employed. After 72 days the tubes under
treatment showed a reduction in the heat transfer resistance (R) of around 70% for NaClO, 48% for aliphatic
amines and 55% for UV, with respect to the untreated tube. The use of a logistic model was very useful for
predicting the fouling progression and the maximum asymptotic value of the increment in the heat transfer
resistance (DRmax). The apparent thermal conductivity (l) of the fouling layer showed a direct relationship with the
percentage of organic matter in the collected fouling. The characteristics and mode of action of the different
treatments used led to fouling with diverse physicochemical properties
A numerical tool to integrate biophysical diversity of a large regulated river: hydrobiogeochemical bases. The case of the Garonne River (France)
This article presents the bases of a hydrobiogeochemical model of the Garonne River (southwest France) which has been developed to integrate physical and biological processes during summer low-water periods. The physical part of this model is composed of a one-dimensional unsteady hydrodynamic model, allowing the resolution of the Saint-Venant equations, and a transport model which simulates downstream changes in solute concentrations. Biogeochemical processes are considered through the definition of functional compartments which make up the channel bed. These different compartments are defined both by the organisms involved in the solute transformation processes and by the physical and hydraulic characteristics of their habitat. Integration of these functional compartments within the model required investigations at different scales. The scale at which biological processes take place ranges from millimetres to metres. The scale of a reach, at which organization of the functional compartments along the river can be linked to hydrodynamic and morphological characteristics, ranges from 500 m to several kilometres. The regional scale is that at which homogeneous reaches can be integrated. A feedback between numerical results and field experiments has allowed improvements to in situ measurement to increase modelling accuracy. For example, the model allows estimation of variables, such as fluxes, that are difficult to measure in situ. The developed model can integrate various functional compartments and their biogeochemical functioning. Two application examples, focused on dissolved inorganic nitrogen, are presented in order to illustrate the numerical tool functioning: integration of equations on nitrification processes in the water body, and integration of consumption/production terms on epilithic biofilm resulting from in situ experimental mean values. The model we have developed constitutes a promising analytical tool that will be able to integrate previous and future studies
Assessing the importance of a self-generated detachment process in river biofilm models
1. Epilithic biofilm biomass was measured for 14 months in two sites, located up- and downstream of the city of Toulouse in the Garonne River (south-west France). Periodical sampling provided a biomass data set to compare with simulations from the model of Uehlinger, Bürher and Reichert (1996: Freshwater Biology, 36, 249–263.), in order to evaluate the impact of hydraulic disturbance.
2. Despite differences in application conditions (e.g. river size, discharge, frequency of disturbance), the base equation satisfactorily predicted biomass between low and high water periods of the year, suggesting that the flood disturbance regime may be considered a universal mechanism controlling periphyton biomass.
3. However modelling gave no agreement with biomass dynamics during the 7-month long low water period that the river experienced. The influence of other biomass-regulating factors (temperature, light and soluble reactive phosphorus) on temporal biomass dynamics was weak.
4. Implementing a supplementary mechanism corresponding to a temperature-dependent self-generated loss because of heterotrophic processes allowed us to accurately reproduce the observed pattern: a succession of two peaks. This case study suggests that during typical summer low water periods (flow stability and favourable temperature) river biofilm modelling requires self-generated detachment to be considered
Methane recovery efficiency in a submerged anaerobic membrane bioreactor (SAnMBR) treating sulphate-rich urban wastewater: Evaluation of methane losses with the effluent
The present paper presents a submerged anaerobic membrane bioreactor (SAnMBR) as a sustainable
approach for urban wastewater treatment at 33 and 20 C, since greenhouse gas emissions are reduced
and energy recovery is enhanced. Compared to other anaerobic systems, such as UASB reactors, the membrane
technology allows the use of biogas-assisted mixing which enhances the methane stripping from
the liquid phase bulk. The methane saturation index obtained for the whole period (1.00 ± 0.04) evidenced
that the equilibrium condition was reached and the methane loss with the effluent was reduced.
The methane recovery efficiency obtained at 20 C (53.6%) was slightly lower than at 33 C (57.4%) due to
a reduction of the treatment efficiency, as evidenced by the lower methane production and the higher
waste sludge per litre of treated wastewater. For both operational temperatures, the methane recovery
efficiency was strongly affected by the high sulphate concentration in the influent wastewater.This research work has been supported by the Spanish Research Foundation (CICYT Projects CTM2008-06809-C02-01 and CTM2008-06809-C02-02) and the Comunidad Valenciana Regional Government (GVACOMP2009-285), which are gratefully acknowledged.Gimenez, J.; Martí, N.; Ferrer, J.; Seco, A. (2012). Methane recovery efficiency in a submerged anaerobic membrane bioreactor (SAnMBR) treating sulphate-rich urban wastewater: Evaluation of methane losses with the effluent. Bioresource Technology. 118:67-72. https://doi.org/10.1016/j.biortech.2012.05.019S677211
- …