192 research outputs found

    Inactivation and sub-lethal injury of salmonella typhi, salmonella typhimurium and vibrio cholerae in copper water storage vessels

    Get PDF
    Background: This study provides information on the antibacterial effect of copper against the water-borne pathogens Salmonella Typhi, Salmonella Typhimurium and Vibrio cholerae. Methods: Suspensions of each pathogen were kept in water within a traditional copper vessel at 30°C for 24 h. Samples were withdrawn, diluted and plated onto suitable growth media. Conventional enumeration of healthy (uninjured) bacteria was carried out using standard aerobic incubation conditions. Additionally, reactive oxygen species-neutralised (ROS-n) conditions were achieved by adding the peroxide scavenger sodium pyruvate to the medium with anaerobic incubation, to enumerate uninjured (ROS-insensitive) and injured (ROS-sensitive) bacteria. Differences between log-transformed means of conventional (aerobic) and ROS-n counts were statistically evaluated using t tests. Results: Overall, all three pathogens were inactivated by storage in copper vessels for 24 h. However, for shorter-term incubation (4-12 h), higher counts were observed under ROS-n conditions than under aerobic conditions, which demonstrate the presence of substantial numbers of sub-lethally injured cells prior to their complete inactivation. Conclusions: The present study has for the first time confirmed that these bacterial pathogens are inactivated by storage in a copper vessel within 24 h. However, it has also demonstrated that it is necessary to account for short-term sub-lethal injury, manifest as ROS-sensitivity, in order to more fully understand the process. This has important practical implications in terms of the time required to store water within a copper vessel to completely inactivate these bacteria and thereby remove the risk of water-borne disease transmission by this route

    Nations within a nation: variations in epidemiological transition across the states of India, 1990–2016 in the Global Burden of Disease Study

    Get PDF
    Background 18% of the world's population lives in India, and many states of India have populations similar to those of large countries. Action to effectively improve population health in India requires availability of reliable and comprehensive state-level estimates of disease burden and risk factors over time. Such comprehensive estimates have not been available so far for all major diseases and risk factors. Thus, we aimed to estimate the disease burden and risk factors in every state of India as part of the Global Burden of Disease (GBD) Study 2016. Methods Using all available data sources, the India State-Level Disease Burden Initiative estimated burden (metrics were deaths, disability-adjusted life-years [DALYs], prevalence, incidence, and life expectancy) from 333 disease conditions and injuries and 84 risk factors for each state of India from 1990 to 2016 as part of GBD 2016. We divided the states of India into four epidemiological transition level (ETL) groups on the basis of the ratio of DALYs from communicable, maternal, neonatal, and nutritional diseases (CMNNDs) to those from non-communicable diseases (NCDs) and injuries combined in 2016. We assessed variations in the burden of diseases and risk factors between ETL state groups and between states to inform a more specific health-system response in the states and for India as a whole. Findings DALYs due to NCDs and injuries exceeded those due to CMNNDs in 2003 for India, but this transition had a range of 24 years for the four ETL state groups. The age-standardised DALY rate dropped by 36·2% in India from 1990 to 2016. The numbers of DALYs and DALY rates dropped substantially for most CMNNDs between 1990 and 2016 across all ETL groups, but rates of reduction for CMNNDs were slowest in the low ETL state group. By contrast, numbers of DALYs increased substantially for NCDs in all ETL state groups, and increased significantly for injuries in all ETL state groups except the highest. The all-age prevalence of most leading NCDs increased substantially in India from 1990 to 2016, and a modest decrease was recorded in the age-standardised NCD DALY rates. The major risk factors for NCDs, including high systolic blood pressure, high fasting plasma glucose, high total cholesterol, and high body-mass index, increased from 1990 to 2016, with generally higher levels in higher ETL states; ambient air pollution also increased and was highest in the low ETL group. The incidence rate of the leading causes of injuries also increased from 1990 to 2016. The five leading individual causes of DALYs in India in 2016 were ischaemic heart disease, chronic obstructive pulmonary disease, diarrhoeal diseases, lower respiratory infections, and cerebrovascular disease; and the five leading risk factors for DALYs in 2016 were child and maternal malnutrition, air pollution, dietary risks, high systolic blood pressure, and high fasting plasma glucose. Behind these broad trends many variations existed between the ETL state groups and between states within the ETL groups. Of the ten leading causes of disease burden in India in 2016, five causes had at least a five-times difference between the highest and lowest state-specific DALY rates for individual causes. Interpretation Per capita disease burden measured as DALY rate has dropped by about a third in India over the past 26 years. However, the magnitude and causes of disease burden and the risk factors vary greatly between the states. The change to dominance of NCDs and injuries over CMNNDs occurred about a quarter century apart in the four ETL state groups. Nevertheless, the burden of some of the leading CMNNDs continues to be very high, especially in the lowest ETL states. This comprehensive mapping of inequalities in disease burden and its causes across the states of India can be a crucial input for more specific health planning for each state as is envisioned by the Government of India's premier think tank, the National Institution for Transforming India, and the National Health Policy 2017

    Monoubiquitination of syntaxin 3 leads to retrieval from the basolateral plasma membrane and facilitates cargo recruitment to exosomes

    Get PDF
    Syntaxin 3 (Stx3), a SNARE protein located and functioning at the apical plasma membrane of epithelial cells, is required for epithelial polarity. A fraction of Stx3 is localized to late endosomes/lysosomes, although how it traffics there and its function in these organelles is unknown. Here we report that Stx3 undergoes monoubiquitination in a conserved polybasic domain. Stx3 present at the basolateral—but not the apical—plasma membrane is rapidly endocytosed, targeted to endosomes, internalized into intraluminal vesicles (ILVs), and excreted in exosomes. A nonubiquitinatable mutant of Stx3 (Stx3-5R) fails to enter this pathway and leads to the inability of the apical exosomal cargo protein GPRC5B to enter the ILV/exosomal pathway. This suggests that ubiquitination of Stx3 leads to removal from the basolateral membrane to achieve apical polarity, that Stx3 plays a role in the recruitment of cargo to exosomes, and that the Stx3-5R mutant acts as a dominant-negative inhibitor. Human cytomegalovirus (HCMV) acquires its membrane in an intracellular compartment and we show that Stx3-5R strongly reduces the number of excreted infectious viral particles. Altogether these results suggest that Stx3 functions in the transport of specific proteins to apical exosomes and that HCMV exploits this pathway for virion excretion

    Common Variants in CRP and LEPR Influence High Sensitivity C-Reactive Protein Levels in North Indians

    Get PDF
    BACKGROUND: High sensitivity C-reactive protein (hsCRP) levels are shown to be influenced by genetic variants in Europeans; however, little is explored in Indian population. METHODS: Herein, we comprehensively evaluated association of all previously reported genetic determinants of hsCRP levels, including 18 cis (proximal to CRP gene) and 73 trans-acting (distal to CRP gene) variants in 4,200 North Indians of Indo-European ethnicity. First, we evaluated association of 91 variants from 12 candidate loci with hsCRP levels in 2,115 North Indians (1,042 non-diabetic subjects and 1,073 patients with type 2 diabetes). Then, cis and trans-acting variants contributing maximally to hsCRP level variation were further replicated in an independent 2,085 North Indians (1,047 patients with type 2 diabetes and 1,038 non-diabetic subjects). RESULTS: We found association of 12 variants from CRP, LEPR, IL1A, IL6, and IL6R with hsCRP levels in non-diabetic subjects. However, only rs3093059-CRP [β = 0.33, P = 9.6×10⁻⁵] and the haplotype harboring rs3093059 risk allele [β = 0.32 µg/mL, P = 1.4×10⁻⁴/P(perm) = 9.0×10⁻⁴] retained significance after correcting for multiple testing. The cis-acting variant rs3093059-CRP had maximum contribution to the variance in hsCRP levels (1.14%). Among, trans-acting variants, rs1892534-LEPR was observed to contribute maximally to hsCRP level variance (0.59%). Associations of rs3093059-CRP and rs1892534-LEPR were confirmed by replication and attained higher significance after meta-analysis [β(meta) = 0.26/0.22; P(meta) = 4.3×10⁻⁷/7.4×10⁻³ and β(meta) = -0.15/-0.12; P(meta) = 2.0×10⁻⁶/1.6×10⁻⁶ for rs3093059 and rs1892534, respectively in non-diabetic subjects and all subjects taken together]. CONCLUSION: In conclusion, we identified rs3093059 in CRP and rs1892534 in LEPR as major cis and trans-acting contributor respectively, to the variance in hsCRP levels in North Indian population

    Quality of sleep in patients with schizophrenia is associated with quality of life and coping

    Get PDF
    BACKGROUND: While sleep disturbance is widespread in schizophrenia it is less clear whether sleep disturbance is uniquely related to impaired coping and perceived quality of life. METHODS: We simultaneously assessed sleep quality, symptoms, and coping in 29 persons with schizophrenia or schizoaffective disorder in a post acute phase of illness. Assessment instruments included the Pittsburgh Sleep Quality Index; the Positive and Negative Symptom Scale; the Heinrichs Quality of Life Scale; and the Ways of Coping Scale. Multiple regressions were performed predicting quality of life and coping from sleep quality controlling for age and symptom severity. On a subset of seven subjects non-dominant wrist actigraphy was used as an objective check of their self-reported poor sleep. RESULTS: Analyses revealed that poor sleep quality predicted low quality of life (r = -0.493; p = .022) and reduced preference for employing positive reappraisal when facing a stressor (r = -0.0594; p = 0.0012). Actigraphy confirmed poor sleep quality in a subset of subjects. They had shorter sleep duration (p < .0005), shorter average sleep episodes (p < .005) and more episodes of long awakening (p < 0.05) than community norms. CONCLUSION: The results are consistent with the hypotheses that poor sleep may play a unique role in sustaining poor quality of life and impaired coping in patients with schizophrenia. These associations may hold for community controls as well

    The home environment and childhood obesity in low-income households: indirect effects via sleep duration and screen time

    Get PDF
    Background Childhood obesity disproportionally affects children from low-income households. With the aim of informing interventions, this study examined pathways through which the physical and social home environment may promote childhood overweight/obesity in low-income households. Methods Data on health behaviors and the home environment were collected at home visits in low-income, urban households with either only normal weight (n = 48) or predominantly overweight/obese (n = 55) children aged 6–13 years. Research staff conducted comprehensive, in-person audits of the foods, media, and sports equipment in each household. Anthropometric measurements were collected, and children’s physical activity was assessed through accelerometry. Caregivers and children jointly reported on child sleep duration, screen time, and dietary intake of foods previously implicated in childhood obesity risk. Path analysis was used to test direct and indirect associations between the home environment and child weight status via the health behaviors assessed. Results Sleep duration was the only health behavior associated with child weight status (OR = 0.45, 95% CI: 0.27, 0.77), with normal weight children sleeping 33.3 minutes/day longer on average than overweight/obese children. The best-fitting path model explained 26% of variance in child weight status, and included paths linking chaos in the home environment, lower caregiver screen time monitoring, inconsistent implementation of bedtime routines, and the presence of a television in children’s bedrooms to childhood overweight/obesity through effects on screen time and sleep duration. Conclusions This study adds to the existing literature by identifying aspects of the home environment that influence childhood weight status via indirect effects on screen time and sleep duration in children from low-income households. Pediatric weight management interventions for low-income households may be improved by targeting aspects of the physical and social home environment associated with sleep

    Genetic Differences between the Determinants of Lipid Profile Phenotypes in African and European Americans: The Jackson Heart Study

    Get PDF
    Genome-wide association analysis in populations of European descent has recently found more than a hundred genetic variants affecting risk for common disease. An open question, however, is how relevant the variants discovered in Europeans are to other populations. To address this problem for cardiovascular phenotypes, we studied a cohort of 4,464 African Americans from the Jackson Heart Study (JHS), in whom we genotyped both a panel of 12 recently discovered genetic variants known to predict lipid profile levels in Europeans and a panel of up to 1,447 ancestry informative markers allowing us to determine the African ancestry proportion of each individual at each position in the genome. Focusing on lipid profiles—HDL-cholesterol (HDL-C), LDL-cholesterol (LDL-C), and triglycerides (TG)—we identified the lipoprotein lipase (LPL) locus as harboring variants that account for interethnic variation in HDL-C and TG. In particular, we identified a novel common variant within LPL that is strongly associated with TG (p = 2.7×10−6) and explains nearly 1% of the variability in this phenotype, the most of any variant in African Americans to date. Strikingly, the extensively studied “gain-of-function” S447X mutation at LPL, which has been hypothesized to be the major determinant of the LPL-TG genetic association and is in trials for human gene therapy, has a significantly diminished strength of biological effect when it is found on a background of African rather than European ancestry. These results suggest that there are other, yet undiscovered variants at the locus that are truly causal (and are in linkage disequilibrium with S447X) or that work synergistically with S447X to modulate TG levels. Finally, we find systematically lower effect sizes for the 12 risk variants discovered in European populations on the African local ancestry background in JHS, highlighting the need for caution in the use of genetic variants for risk assessment across different populations

    Signaling pathway networks mined from human pituitary adenoma proteomics data

    Get PDF
    Abstract Background We obtained a series of pituitary adenoma proteomic expression data, including protein-mapping data (111 proteins), comparative proteomic data (56 differentially expressed proteins), and nitroproteomic data (17 nitroproteins). There is a pressing need to clarify the significant signaling pathway networks that derive from those proteins in order to clarify and to better understand the molecular basis of pituitary adenoma pathogenesis and to discover biomarkers. Here, we describe the significant signaling pathway networks that were mined from human pituitary adenoma proteomic data with the Ingenuity pathway analysis system. Methods The Ingenuity pathway analysis system was used to analyze signal pathway networks and canonical pathways from protein-mapping data, comparative proteomic data, adenoma nitroproteomic data, and control nitroproteomic data. A Fisher's exact test was used to test the statistical significance with a significance level of 0.05. Statistical significant results were rationalized within the pituitary adenoma biological system with literature-based bioinformatics analyses. Results For the protein-mapping data, the top pathway networks were related to cancer, cell death, and lipid metabolism; the top canonical toxicity pathways included acute-phase response, oxidative-stress response, oxidative stress, and cell-cycle G2/M transition regulation. For the comparative proteomic data, top pathway networks were related to cancer, endocrine system development and function, and lipid metabolism; the top canonical toxicity pathways included mitochondrial dysfunction, oxidative phosphorylation, oxidative-stress response, and ERK/MAPK signaling. The nitroproteomic data from a pituitary adenoma were related to cancer, cell death, lipid metabolism, and reproductive system disease, and the top canonical toxicity pathways mainly related to p38 MAPK signaling and cell-cycle G2/M transition regulation. Nitroproteins from a pituitary control related to gene expression and cellular development, and no canonical toxicity pathways were identified. Conclusions This pathway network analysis demonstrated that mitochondrial dysfunction, oxidative stress, cell-cycle dysregulation, and the MAPK-signaling abnormality are significantly associated with a pituitary adenoma. These pathway-network data provide new insights into the molecular mechanisms of human pituitary adenoma pathogenesis, and new clues for an in-depth investigation of pituitary adenoma and biomarker discovery.</p
    corecore