82 research outputs found
Temporal progression in migratory status and sexual maturation in European silver eels during downstream migration
The onset of downstream migration of European eels is accompanied by a cessation of feeding and the start of sexual maturation which stresses the link between metabolism and sexual maturation, also suggesting an important role for exercise. Exercise has been tested with eels in swim tunnels and was found to stimulate the onset of sexual maturation. In this study, we have investigated the interplay between migration and maturation in the field during the downstream migration of female silver eels. Temporal changes in migratory status and sexual maturation among silver eels of the upstream Rhine River system over 3 months of the migration season (August, September and October) were determined in biometrical parameters, plasma 17β-estradiol and calcium levels, oocyte histology and gonadal fat levels. Furthermore, the ecological relevant parameters age as determined by otolithometry and health aspects indicated by haematocrit, haemoglobin and swim-bladder parasite load were measured. Silver eels were estimated to be 14 years old. A strong temporal progression in migratory stage was shown over the months of downstream migration. Catches probably represented a mix of reproductive migrants and feeding migrants of which the ratio increased over time. Furthermore, this study confirmed our hypothesis linking the migratory stage to early maturation as indicated by enlargement of the eyes, oocyte growth and fat deposition in the oocytes, exactly the same changes as found induced by exercise but not ruling out environmental influences. Migrants show extensive fat uptake by the oocytes, probably stimulated by the swimming exercise. In addition, at least 83% of the silver eels in this spawning run may have suffered from negative effects of swim-bladder parasites on their swimming performance
Fish under exercise
Improved knowledge on the swimming physiology of fish and its application to fisheries science and aquaculture (i.e., farming a fitter fish) is currently needed in the face of global environmental changes, high fishing pressures, increased aquaculture production as well as increased concern on fish well-being. Here, we review existing data on teleost fish that indicate that sustained exercise at optimal speeds enhances muscle growth and has consequences for flesh quality. Potential added benefits of sustained exercise may be delay of ovarian development and stimulation of immune status. Exercise could represent a natural, noninvasive, and economical approach to improve growth, flesh quality as well as welfare of aquacultured fish: a FitFish for a healthy consumer. All these issues are important for setting directions for policy decisions and future studies in this area. For this purpose, the FitFish workshop on the Swimming Physiology of Fish (http://www.ub.edu/fitfish2010) was organized to bring together a multidisciplinary group of scientists using exercise models, industrial partners, and policy makers. Sixteen international experts from Europe, North America, and Japan were invited to present their work and view on migration of fishes in their natural environment, beneficial effects of exercise, and applications for sustainable aquaculture. Eighty-eight participants from 19 different countries contributed through a poster session and round table discussion. Eight papers from invited speakers at the workshop have been contributed to this special issue on The Swimming Physiology of Fish
Hidden Orbital Order in
When matter is cooled from high temperatures, collective instabilities
develop amongst its constituent particles that lead to new kinds of order. An
anomaly in the specific heat is a classic signature of this phenomenon. Usually
the associated order is easily identified, but sometimes its nature remains
elusive. The heavy fermion metal is one such example, where the
order responsible for the sharp specific heat anomaly at has
remained unidentified despite more than seventeen years of effort. In
, the coexistence of large electron-electron repulsion and
antiferromagnetic fluctuations in leads to an almost incompressible
heavy electron fluid, where anisotropically paired quasiparticle states are
energetically favored. In this paper we use these insights to develop a
detailed proposal for the hidden order in . We show that
incommensurate orbital antiferromagnetism, associated with circulating currents
between the uranium ions, can account for the local fields and entropy loss
observed at the transition; furthermore we make detailed predictions for
neutron scattering measurements
Swimming physiology of European silver eels (Anguilla anguilla L.): energetic costs and effects on sexual maturation and reproduction
The European eel migrates 5,000–6,000 km to the Sargasso Sea to reproduce. Because they venture into the ocean in a pre-pubertal state and reproduce after swimming for months, a strong interaction between swimming and sexual maturation is expected. Many swimming trials have been performed in 22 swim tunnels to elucidate their performance and the impact on maturation. European eels are able to swim long distances at a cost of 10–12 mg fat/km which is 4–6 times more efficient than salmonids. The total energy costs of reproduction correspond to 67% of the fat stores. During long distance swimming, the body composition stays the same showing that energy consumption calculations cannot be based on fat alone but need to be compensated for protein oxidation. The optimal swimming speed is 0.61–0.67 m s−1, which is ~60% higher than the generally assumed cruise speed of 0.4 m s−1 and implies that female eels may reach the Sargasso Sea within 3.5 months instead of the assumed 6 months. Swimming trials showed lipid deposition and oocyte growth, which are the first steps of sexual maturation. To investigate effects of oceanic migration on maturation, we simulated group-wise migration in a large swim-gutter with seawater. These trials showed suppressed gonadotropin expression and vitellogenesis in females, while in contrast continued sexual maturation was observed in silver males. The induction of lipid deposition in the oocytes and the inhibition of vitellogenesis by swimming in females suggest a natural sequence of events quite different from artificial maturation protocols
Dramatic effect of pop-up satellite tags on eel swimming
The journey of the European eel to the spawning area in the Sargasso Sea is still a mystery. Several trials have been carried out to follow migrating eels with pop-up satellite tags (PSATs), without much success. As eels are very efficient swimmers, tags likely interfere with their high swimming efficiency. Here we report a more than twofold increase in swimming cost caused by a regular small satellite tag. The impact was determined at a range of swimming speeds with and without tag in a 2-m swimming tunnel. These results help to explain why the previous use of PSATs to identify spawning sites in the Sargasso Sea was thus far unsuccessful
Spin-orbit density wave induced hidden topological order in URu2Si2
The conventional order parameters in quantum matters are often characterized
by 'spontaneous' broken symmetries. However, sometimes the broken symmetries
may blend with the invariant symmetries to lead to mysterious emergent phases.
The heavy fermion metal URu2Si2 is one such example, where the order parameter
responsible for a second-order phase transition at Th = 17.5 K has remained a
long-standing mystery. Here we propose via ab-initio calculation and effective
model that a novel spin-orbit density wave in the f-states is responsible for
the hidden-order phase in URu2Si2. The staggered spin-orbit order 'spontaneous'
breaks rotational, and translational symmetries while time-reversal symmetry
remains intact. Thus it is immune to pressure, but can be destroyed by magnetic
field even at T = 0 K, that means at a quantum critical point. We compute
topological index of the order parameter to show that the hidden order is
topologically invariant. Finally, some verifiable predictions are presented.Comment: (v2) Substantially modified from v1, more calculation and comparison
with experiments are include
Fermi surface instability at the hidden-order transition of URu2Si2
Solids with strong electron correlations generally develop exotic phases of
electron matter at low temperatures. Among such systems, the heavy-fermion
semi-metal URu2Si2 presents an enigmatic transition at To = 17.5 K to a `hidden
order' state whose order parameter remains unknown after 23 years of intense
research. Various experiments point to the reconstruction and partial gapping
of the Fermi surface when the hidden-order establishes. However, up to now, the
question of how this transition affects the electronic spectrum at the Fermi
surface has not been directly addressed by a spectroscopic probe. Here we show,
using angle-resolved photoemission spectroscopy, that a band of heavy
quasi-particles drops below the Fermi level upon the transition to the
hidden-order state. Our data provide the first direct evidence of a large
reorganization of the electronic structure across the Fermi surface of URu2Si2
occurring during this transition, and unveil a new kind of Fermi-surface
instability in correlated electron systemsComment: 15 pages, 5 figure
Emergent Rank-5 'Nematic' Order in URu2Si2
Novel electronic states resulting from entangled spin and orbital degrees of
freedom are hallmarks of strongly correlated f-electron systems. A spectacular
example is the so-called 'hidden-order' phase transition in the heavy-electron
metal URu2Si2, which is characterized by the huge amount of entropy lost at
T_{HO}=17.5K. However, no evidence of magnetic/structural phase transition has
been found below T_{HO} so far. The origin of the hidden-order phase transition
has been a long-standing mystery in condensed matter physics. Here, based on a
first-principles theoretical approach, we examine the complete set of multipole
correlations allowed in this material. The results uncover that the
hidden-order parameter is a rank-5 multipole (dotriacontapole) order with
'nematic' E^- symmetry, which exhibits staggered pseudospin moments along the
[110] direction. This naturally provides comprehensive explanations of all key
features in the hidden-order phase including anisotropic magnetic excitations,
nearly degenerate antiferromagnetic-ordered state, and spontaneous
rotational-symmetry breaking.Comment: See the published version with more detailed discussion
Coexistence of metallic and nonmetallic properties in the pyrochlore Lu2Rh2O7
Transition metal oxides of the and block have recently become the
targets of materials discovery, largely due to their strong spin-orbit coupling
that can generate exotic magnetic and electronic states. Here we report the
high pressure synthesis of LuRhO, a new cubic pyrochlore oxide
based on Rh and characterizations via thermodynamic, electrical
transport, and muon spin relaxation measurements. Magnetic susceptibility
measurements reveal a large temperature-independent Pauli paramagnetic
contribution, while heat capacity shows an enhanced Sommerfeld coefficient,
= 21.8(1) mJ/mol-Rh K. Muon spin relaxation measurements confirm
that LuRhO remains paramagnetic down to 2 K. Taken in combination,
these three measurements suggest that LuRhO is a correlated
paramagnetic metal with a Wilson ratio of . However, electric
transport measurements present a striking contradiction as the resistivity of
LuRhO is observed to monotonically increase with decreasing
temperature, indicative of a nonmetallic state. Furthermore, although the
magnitude of the resistivity is that of a semiconductor, the temperature
dependence does not obey any conventional form. Thus, we propose that
LuRhO may belong to the same novel class of non-Fermi liquids as
the nonmetallic metal FeCrAs.Comment: 11 pages, 5 figure
- …