179 research outputs found

    The electric field alignment of short carbon fibres to enhance the toughness of epoxy composites

    Get PDF
    An investigation is presented on increasing the fracture toughness of epoxy/short carbon fibre (SCF) composites by alignment of SCFs using an externally applied alternating current (AC) electric field. Firstly, the effects of SCF length, SCF content and AC electric field strength on the rotation of the SCFs suspended in liquid (i.e. uncured) epoxy resin are investigated. Secondly, it is shown the mode I fracture toughness of the cured epoxy composites increases with the weight fraction of SCFs up to a limiting value (5 wt%). Thirdly, the toughening effect is greater when the SCFs are aligned in the composite normal to the direction of crack growth. The SCFs increases the fracture toughness by inducing multiple intrinsic and extrinsic toughening mechanisms, which are identified. Based on the identified toughening mechanisms, an analytical model is proposed to predict the enhancement to the fracture toughness due to AC electric field alignment of the SCFs

    Effects of stitching on delamination of satin weave carbon-epoxy laminates under mode I, mode II and mixed-mode I/II loadings

    Get PDF
    The objective of the present study is to characterize the effect of modified chain stitching on the delamination growth under mixed-mode I/II loading conditions. Delamination toughness under mode I is experimentally determined, for unstitched and stitched laminates, by using untabbed and tabbed double cantilever beam (TDCB) tests. The effect of the reinforcing tabs on mode I toughness is investigated. Stitching improves the energy release rate (ERR) up to 4 times in mode I. Mode II delamination toughness is evaluated in end-notched flexure (ENF) tests. Different geometries of stitched specimens are tested. Crack propagation occurs without any failure of stitching yarns. The final crack length attains the mid-span or it stops before and the specimen breaks in bending. The ERR is initially low and gradually increases with crack length to very high values. The mixedmode delamination behaviour is investigated using a mixed-mode bending (MMB) test. For unstitched specimens, a simple mixed-mode criterion is identified. For stitched specimens, stitching yarns do not break during 25% of mode I ratio tests and the ERR increase is relatively small compared to unstitched values. For 70% and 50% of mode I ratios, failures of yarns are observed during crack propagation and tests are able to capture correctly the effect of the stitching: it clearly improves the ERR for these two mixed modes, as much as threefold

    Rubber Impact on 3D Textile Composites

    Get PDF
    A low velocity impact study of aircraft tire rubber on 3D textile-reinforced composite plates was performed experimentally and numerically. In contrast to regular unidirectional composite laminates, no delaminations occur in such a 3D textile composite. Yarn decohesions, matrix cracks and yarn ruptures have been identified as the major damage mechanisms under impact load. An increase in the number of 3D warp yarns is proposed to improve the impact damage resistance. The characteristic of a rubber impact is the high amount of elastic energy stored in the impactor during impact, which was more than 90% of the initial kinetic energy. This large geometrical deformation of the rubber during impact leads to a less localised loading of the target structure and poses great challenges for the numerical modelling. A hyperelastic Mooney-Rivlin constitutive law was used in Abaqus/Explicit based on a step-by-step validation with static rubber compression tests and low velocity impact tests on aluminium plates. Simulation models of the textile weave were developed on the meso- and macro-scale. The final correlation between impact simulation results on 3D textile-reinforced composite plates and impact test data was promising, highlighting the potential of such numerical simulation tools

    Geometric modeling of 3D woven preforms in composite T-joints

    Get PDF
    A common method to fabricate net-shaped three-dimensional (3D) woven preforms for composite T-joints is to weave flat 3D preforms via a standard weaving machine with variation in binder yarn path and then separate the preform in the form of a bifurcation. Folding introduces fiber architecture deformation at the 3D woven bifurcation area. In this paper, a geometric modeling approach is proposed to represent the realistic fiber architecture, as a preprocessor for finite element analyses to predict composite structural performance. Supported by X-ray micro-computed tomography (mCT), three important deformation mechanisms are observed including yarn stack shifting, cross-section bending, and cross-section flattening resulting from the folding process. Furthermore, a set of mathematical formulae for simulation of the deformations in the junction region are developed and satisfactory agreement is observed when compared with mCT scan results

    Abrasive wear of steel during rolling-sliding contact with rock counterfaces

    No full text
    In many mining operations (e.g. excavation, drilling, tunnelling, rock crushing) metallic components are forced against abrasive rocks in a complex motion. This study examines the relative importance of combined rolling and sliding motion in the two-body abrasive wear of a low carbon tempered martensitic steel against rock counterfaces. A novel wear test rig has been used to vary the amount of rolling and sliding motion between a rotating steel cylinder and a counter-rotating sandstone (highly abrasive) or limestone (much less abrasive) disc. Weight-loss measurements reveal that the wear rate of the steel increases as the amount of motion against the rock counterface is reduced from pure sliding to approximately 50% sliding (and approximately 50% rolling). Scanning electron microscopy shows that when the amount of motion is reduced from pure sliding to approximately 50% sliding the topographical and sub-surface physical properties of the worn steel and rock surfaces are modified
    • …
    corecore