18 research outputs found

    Inferring cell cycle feedback regulation from gene expression data.

    No full text
    Feedback control is an important regulatory process in biological systems, which confers robustness against external and internal disturbances. Genes involved in feedback structures are therefore likely to have a major role in regulating cellular processes. Here we rely on a dynamic Bayesian network approach to identify feedback loops in cell cycle regulation. We analyzed the transcriptional profile of the cell cycle in HeLa cancer cells and identified a feedback loop structure composed of 10 genes. In silico analyses showed that these genes hold important roles in system's dynamics. The results of published experimental assays confirmed the central role of 8 of the identified feedback loop genes in cell cycle regulation. In conclusion, we provide a novel approach to identify critical genes for the dynamics of biological processes. This may lead to the identification of therapeutic targets in diseases that involve perturbations of these dynamics

    Cancer immunosuppression and autoimmune disease: beyond immunosuppressive networks for tumour immunity

    No full text
    Cancer immunosuppression evolves by constitution of an immunosuppressive network extending from a primary tumour site to secondary lymphoid organs and peripheral vessels and is mediated by several tumour-derived soluble factors (TDSFs) such as interleukin-10 (IL-10), transforming growth factor-β (TGF-β) and vascular endothelial growth factor (VEGF). TDSFs induce immature myeloid cells and regulatory T cells in accordance with tumour progression, resulting in the inhibition of dendritic cell maturation and T-cell activation in a tumour-specific immune response. Tumour cells grow by exploiting a pro-inflammatory situation in the tumour microenvironment, whereas immune cells are regulated by TDSFs during anti-inflammatory situations—mediated by impaired clearance of apoptotic cells—that cause the release of IL-10, TGF-β, and prostaglandin E(2) (PGE(2)) by macrophages. Accumulation of impaired apoptotic cells induces anti-DNA antibodies directed against self antigens, which resembles a pseudo-autoimmune status. Systemic lupus erythematosus is a prototype of autoimmune disease that is characterized by defective tolerance of self antigens, the presence of anti-DNA antibodies and a pro-inflammatory response. The anti-DNA antibodies can be produced by impaired clearance of apoptotic cells, which is the result of a hereditary deficiency of complements C1q, C3 and C4, which are involved in the recognition of phagocytosis by macrophages. Thus, it is likely that impaired clearance of apoptotic cells is able to provoke different types of immune dysfunction in cancer and autoimmune disease in which some are similar and others are critically different. This review discusses a comparison of immunological dysfunctions in cancer and autoimmune disease with the aim of exploring new insights beyond cancer immunosuppression in tumour immunity

    Regulatory iNKT cells lack expression of the transcription factor PLZF and control the homeostasis of Treg cells and macrophages in adipose tissue

    No full text
    iNKT cells are CD1d-restricted lipid-sensing innate T cells that express the transcription factor PLZF. iNKT cells accumulate in adipose tissue, where they are anti-inflammatory, but the factors that contribute to their anti-inflammatory nature, and their targets in adipose tissue are unknown. Here we report that adipose tissue iNKT cells have a unique transcriptional program and produce interleukin 2 (IL-2) and IL-10. Unlike other iNKT cells, they lack PLZF, but express the transcription factor E4BP4, which controls their IL-10 production. Adipose iNKT cells are a tissue resident population that induces an anti-inflammatory phenotype in macrophages and, through production of IL-2, controls the number, proliferation and suppressor function of adipose regulatory T (T(reg)) cells. Thus, adipose tissue iNKT cells are unique regulators of immune homeostasis in this tissue
    corecore