17 research outputs found

    Cooperativity in the binding of the cationic biocide polyhexamethylene biguanide to nucleic acids

    No full text
    The interaction between the broad-spectrum antimicrobial agent, polyhexamethylene biguanide (PHMB), and various nucleic acids was investigated. Titration of either single- or double-stranded 100-bp DNA, or mixed-molecular weight marker DNA, or tRNA with PHMB caused precipitation of a complex between nucleic acid and PHMB in which the nucleotide/biguanide ratio was always close to unity. Binding of PHMB was highly cooperative, with apparent Hill coefficients 10.3–14.6. When a fluorescent derivative of PHMB was titrated with increasing amounts of nucleic acid, all four forms of nucleic acid caused strong polarisation of fluorescence, demonstrating the association with PHMB. The intensity and broad-spectrum binding of PHMB to all forms of nucleic acid has significant implications for the mechanism of action of this biocide

    The Response of Escherichia coli to Exposure to the Biocide Polyhexamethylene Biguanide

    No full text
    The global response of Escherichia coli to the broad-spectrum biocide polyhexamethylene biguanide (PHMB) was investigated using transcriptional profiling. The transcriptional analyses were validated by direct determination of the PHMB-tolerance phenotypes of derivatives of E. coli MG1655 carrying either insertionally inactivated genes and/or plasmids expressing the cognate open reading frames from a heterologous promoter in the corresponding chromosomally inactivated strains. The results showed that a wide range of genes was altered in transcriptional activity and that all of the corresponding knockout strains subsequently challenged with biocide were altered in tolerance. Of particular interest was the induction of the rhs genes and the implication of enzymes involved in the repair/binding of nucleic acids in the generation of tolerance, suggesting a novel dimension in the mechanism of action of PHMB based on its interaction with nucleic acids
    corecore