6 research outputs found
Coupling of CFD and semiempirical methods for designing three-phase condensate separator: case study and experimental validation
This study presents an approach to determine the dimensions of three-phase separators. First, we designed different vessel configurations based on the fluid properties of an Iranian gas condensate field. We then used a comprehensive computational fluid dynamic (CFD) method for analyzing the three-phase separation phenomena. For simulation purposes, the combined volume of fluid–discrete particle method (DPM) approach was used. The discrete random walk (DRW) model was used to include the effect of arbitrary particle movement due to variations caused by turbulence. In addition, the comparison of experimental and simulated results was generated using different turbulence models, i.e., standard k–ε, standard k–ω, and Reynolds stress model. The results of numerical calculations in terms of fluid profiles, separation performance and DPM particle behavior were used to choose the optimum vessel configuration. No difference between the dimensions of the optimum vessel and the existing separator was found. Also, simulation data were compared with experimental data pertaining to a similar existing separator. A reasonable agreement between the results of numerical calculation and experimental data was observed. These results showed that the used CFD model is well capable of investigating the performance of a three-phase separator
VKORC1 Pharmacogenetics and Pharmacoproteomics in Patients on Warfarin Anticoagulant Therapy: Transthyretin Precursor as a Potential Biomarker
Recognizing specific protein changes in response to drug administration in humans has the potential for the development of personalized medicine. Such changes can be identified by pharmacoproteomics approach based on proteomic technologies. It can also be helpful in matching a particular target-based therapy to a particular marker in a subgroup of patients, in addition to the profile of genetic polymorphism. Warfarin is a commonly prescribed oral anticoagulant in patients with prosthetic valve disease, venous thromboembolism and stroke.We used a combined pharmacogenetics and iTRAQ-coupled LC-MS/MS pharmacoproteomics approach to analyze plasma protein profiles of 53 patients, and identified significantly upregulated level of transthyretin precursor in patients receiving low dose of warfarin but not in those on high dose of warfarin. In addition, real-time RT-PCR, western blotting, human IL-6 ELISA assay were done for the results validation.This combined pharmacogenomics and pharmacoproteomics approach may be applied for other target-based therapies, in matching a particular marker in a subgroup of patients, in addition to the profile of genetic polymorphism