1,534 research outputs found

    Taking Ecological Function Seriously: Soil Microbial Communities Can Obviate Allelopathic Effects of Released Metabolites

    Get PDF
    Allelopathy (negative, plant-plant chemical interactions) has been largely studied as an autecological process, often assuming simplistic associations between pairs of isolated species. The growth inhibition of a species in filter paper bioassay enriched with a single chemical is commonly interpreted as evidence of an allelopathic interaction, but for some of these putative examples of allelopathy, the results have not been verifiable in more natural settings with plants growing in soil.On the basis of filter paper bioassay, a recent study established allelopathic effects of m-tyrosine, a component of root exudates of Festuca rubra ssp. commutata. We re-examined the allelopathic effects of m-tyrosine to understand its dynamics in soil environment. Allelopathic potential of m-tyrosine with filter paper and soil (non-sterile or sterile) bioassays was studied using Lactuca sativa, Phalaris minor and Bambusa arundinacea as assay species. Experimental application of m-tyrosine to non-sterile and sterile soil revealed the impact of soil microbial communities in determining the soil concentration of m-tyrosine and growth responses.Here, we show that the allelopathic effects of m-tyrosine, which could be seen in sterilized soil with particular plant species were significantly diminished when non-sterile soil was used, which points to an important role for rhizosphere-specific and bulk soil microbial activity in determining the outcome of this allelopathic interaction. Our data show that the amounts of m-tyrosine required for root growth inhibition were higher than what would normally be found in F. rubra ssp. commutata rhizosphere. We hope that our study will motivate researchers to integrate the role of soil microbial communities in bioassays in allelopathic research so that its importance in plant-plant competitive interactions can be thoroughly evaluated

    The nuclear receptors of Biomphalaria glabrata and Lottia gigantea: Implications for developing new model organisms

    Get PDF
    © 2015 Kaur et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are creditedNuclear receptors (NRs) are transcription regulators involved in an array of diverse physiological functions including key roles in endocrine and metabolic function. The aim of this study was to identify nuclear receptors in the fully sequenced genome of the gastropod snail, Biomphalaria glabrata, intermediate host for Schistosoma mansoni and compare these to known vertebrate NRs, with a view to assessing the snail's potential as a invertebrate model organism for endocrine function, both as a prospective new test organism and to elucidate the fundamental genetic and mechanistic causes of disease. For comparative purposes, the genome of a second gastropod, the owl limpet, Lottia gigantea was also investigated for nuclear receptors. Thirty-nine and thirty-three putative NRs were identified from the B. glabrata and L. gigantea genomes respectively, based on the presence of a conserved DNA-binding domain and/or ligand-binding domain. Nuclear receptor transcript expression was confirmed and sequences were subjected to a comparative phylogenetic analysis, which demonstrated that these molluscs have representatives of all the major NR subfamilies (1-6). Many of the identified NRs are conserved between vertebrates and invertebrates, however differences exist, most notably, the absence of receptors of Group 3C, which includes some of the vertebrate endocrine hormone targets. The mollusc genomes also contain NR homologues that are present in insects and nematodes but not in vertebrates, such as Group 1J (HR48/DAF12/HR96). The identification of many shared receptors between humans and molluscs indicates the potential for molluscs as model organisms; however the absence of several steroid hormone receptors indicates snail endocrine systems are fundamentally different.The National Centre for the Replacement, Refinement and Reduction of Animals in Research, Grant Ref:G0900802 to CSJ, LRN, SJ & EJR [www.nc3rs.org.uk]

    Pancreatic cancer cells resistance to gemcitabine: the role of MUC4 mucin

    Get PDF
    BACKGROUND: A major obstacle to the successful management of pancreatic cancer is to acquire resistance to the existing chemotherapeutic agents. Resistance to gemcitabine, the standard first-line chemotherapeutic agent for advanced and metastatic pancreatic cancer, is mainly attributed to an altered apoptotic threshold in the pancreatic cancer. The MUC4 transmembrane glycoprotein is aberrantly overexpressed in the pancreatic cancer and recently, has been shown to increase pancreatic tumour cell growth by the inhibition of apoptosis. METHODS: Effect of MUC4 on pancreatic cancer cells resistance to gemcitabine was studied in MUC4-expressing and MUC4-knocked down pancreatic cancer cell lines after treatment with gemcitabine by Annexin-V staining, DNA fragmentation assay, assessment of mitochondrial cytochrome c release, immunoblotting and co-immunoprecipitation techniques. RESULTS: Annexin-V staining and DNA fragmentation experiment demonstrated that MUC4 protects CD18/HPAF pancreatic cancer cells from gemcitabine-induced apoptosis. In concert with these results, MUC4 also attenuated mitochondrial cytochrome c release and the activation of caspase-9. Further, our results showed that MUC4 exerts anti-apoptotic function through HER2/extracellular signal-regulated kinase-dependent phosphorylation and inactivation of the pro-apoptotic protein Bad. CONCLUSION: Our results elucidate the function of MUC4 in imparting resistance to pancreatic cancer cells against gemcitabine through the activation of anti-apoptotic pathways and, thereby, promoting cell survival

    Monoclonal Antibodies Recognizing the Non-Tandem Repeat Regions of the Human Mucin MUC4 in Pancreatic Cancer

    Get PDF
    The MUC4 mucin is a high molecular weight, membrane-bound, and highly glycosylated protein. It is a multi-domain protein that is putatively cleaved into a large mucin-like subunit (MUC4α) and a C-terminal growth-factor like subunit (MUC4β). MUC4 plays critical roles in physiological and pathological conditions and is aberrantly overexpressed in several cancers, including those of the pancreas, cervix, breast and lung. It is also a potential biomarker for the diagnosis, prognosis and progression of several malignancies. Further, MUC4 plays diverse functional roles in cancer initiation and progression as evident from its involvement in oncogenic transformation, proliferation, inhibition of apoptosis, motility and invasion, and resistance to chemotherapy in human cancer cells. We have previously generated a monoclonal antibody 8G7, which is directed against the TR region of MUC4, and has been extensively used to study the expression of MUC4 in several malignancies. Here, we describe the generation of anti-MUC4 antibodies directed against the non-TR regions of MUC4. Recombinant glutathione-S-transferase (GST)-fused MUC4α fragments, both upstream (MUC4α-N-Ter) and downstream (MUC4α-C-Ter) of the TR domain, were used as immunogens to immunize BALB/c mice. Following cell fusion, hybridomas were screened using the aforementioned recombinant proteins ad lysates from human pancreatic cell lines. Three anti MUC4α-N-Ter and one anti-MUC4α-C-Ter antibodies were characterized by several inmmunoassays including enzyme-linked immunosorbent assay (ELISA), immunoblotting, immunofluorescene, flow cytometry and immunoprecipitation using MUC4 expressing human pancreatic cancer cell lines. The antibodies also reacted with the MUC4 in human pancreatic tumor sections in immunohistochemical analysis. The new domain-specific anti-MUC4 antibodies will serve as important reagents to study the structure-function relationship of MUC4 domains and for the development of MUC4-based diagnostics and therapeutics

    FRET-Based Identification of mRNAs Undergoing Translation

    Get PDF
    We present proof-of-concept in vitro results demonstrating the feasibility of using single molecule fluorescence resonance energy transfer (smFRET) measurements to distinguish, in real time, between individual ribosomes programmed with several different, short mRNAs. For these measurements we use either the FRET signal generated between two tRNAs labeled with different fluorophores bound simultaneously in adjacent sites to the ribosome (tRNA-tRNA FRET) or the FRET signal generated between a labeled tRNA bound to the ribosome and a fluorescent derivative of ribosomal protein L1 (L1-tRNA FRET). With either technique, criteria were developed to identify the mRNAs, taking into account the relative activity of the mRNAs. These criteria enabled identification of the mRNA being translated by a given ribosome to within 95% confidence intervals based on the number of identified FRET traces. To upgrade the approach for natural mRNAs or more complex mixtures, the stoichiometry of labeling should be enhanced and photobleaching reduced. The potential for porting these methods into living cells is discussed

    Where the Wild Things Are: Pathogenesis of SIV Infection in African Nonhuman Primate Hosts

    Get PDF
    African nonhuman primates that are natural hosts of simian immunodeficiency virus (SIV) are generally spared from disease progression. Pathogenic and nonpathogenic SIV infections share some major features: high viral replication, massive acute depletion of mucosal CD4+ T cells, and partial control of the virus by both adaptive and innate immune responses. A key distinction of natural SIV infections is rapid and active control of immune activation and apoptosis of T cells that contributes to the integrity of mucosal barrier and lack of microbial translocation. This allows partial recovery of CD4+ T cells and preservation of the function of other immune cell subsets. A better understanding of the mechanisms underlying the lack of disease in natural hosts for SIV infection will likely provide important clues as to the therapy of HIV-1 infection

    Association of Panton Valentine Leukocidin (PVL) genes with methicillin resistant Staphylococcus aureus (MRSA) in Western Nepal: a matter of concern for community infections (a hospital based prospective study)

    Get PDF
    BACKGROUND: Methicillin resistant Staphylococcus aureus (MRSA) is a major human pathogen associated with nosocomial and community infections. Panton Valentine leukocidin (PVL) is considered one of the important virulence factors of S. aureus responsible for destruction of white blood cells, necrosis and apoptosis and as a marker of community acquired MRSA. This study was aimed to determine the prevalence of PVL genes among MRSA isolates and to check the reliability of PVL as marker of community acquired MRSA isolates from Western Nepal. METHODS: A total of 400 strains of S. aureus were collected from clinical specimens and various units (Operation Theater, Intensive Care Units) of the hospital and 139 of these had been confirmed as MRSA by previous study. Multiplex PCR was used to detect mecA and PVL genes. Clinical data as well as antimicrobial susceptibility data was analyzed and compared among PVL positive and negative MRSA isolates. RESULTS: Out of 139 MRSA isolates, 79 (56.8 %) were PVL positive. The majority of the community acquired MRSA (90.4 %) were PVL positive (Positive predictive value: 94.9 % and negative predictive value: 86.6 %), while PVL was detected only in 4 (7.1 %) hospital associated MRSA strains. None of the MRSA isolates from hospital environment was found positive for the PVL genes. The majority of the PVL positive strains (75.5 %) were isolated from pus samples. Antibiotic resistance among PVL negative MRSA isolates was found higher as compared to PVL positive MRSA. CONCLUSION: Our study showed high prevalence of PVL among community acquired MRSA isolates. Absence of PVL among MRSA isolates from hospital environment indicates its poor association with hospital acquired MRSA and therefore, PVL may be used a marker for community acquired MRSA. This is first study from Nepal, to test PVL among MRSA isolates from hospital environment. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12879-016-1531-1) contains supplementary material, which is available to authorized users

    Mutations in the Catalytic Loop HRD Motif Alter the Activity and Function of Drosophila Src64

    Get PDF
    The catalytic loop HRD motif is found in most protein kinases and these amino acids are predicted to perform functions in catalysis, transition to, and stabilization of the active conformation of the kinase domain. We have identified mutations in a Drosophila src gene, src64, that alter the three HRD amino acids. We have analyzed the mutants for both biochemical activity and biological function during development. Mutation of the aspartate to asparagine eliminates biological function in cytoskeletal processes and severely reduces fertility, supporting the amino acid's critical role in enzymatic activity. The arginine to cysteine mutation has little to no effect on kinase activity or cytoskeletal reorganization, suggesting that the HRD arginine may not be critical for coordinating phosphotyrosine in the active conformation. The histidine to leucine mutant retains some kinase activity and biological function, suggesting that this amino acid may have a biochemical function in the active kinase that is independent of its side chain hydrogen bonding interactions in the active site. We also describe the phenotypic effects of other mutations in the SH2 and tyrosine kinase domains of src64, and we compare them to the phenotypic effects of the src64 null allele
    corecore