64 research outputs found
Further evidence for the planet around 51 Pegasi
The discovery of the planet around the solar-type star 51 Pegasi marked a
watershed in the search for extrasolar planets. Since then seven other
solar-type stars have been discovered, of which several have surprisingly short
orbital periods, like the planet around 51 Peg. These planets were detected
using the indirect technique of measuring variations in the Doppler shifts of
lines in the spectra of the primary stars. But it is possible that oscillations
of the stars themselves (or other effects) could mimic the signature of the
planets, particularly around the short-period planets. The apparent lack of
spectral and brightness variations, however, led to widespread acceptance that
there is a planet around 51 Peg. This conclusion was challenged by the
observation of systematic variations in the line profile shapes of 51 Peg,
which suggested stellar oscillations. If these observations are correct, then
there is no need to invoke a planet around 51 Peg to explain the data. Here we
report observations of 51 Peg at a much higher spectral resolution than those
in ref.9, in which we find no evidence for systematic changes in the line
shapes. The data are most consistent with a planetary companion to 51 Peg.Comment: LaTeX, 6 pages, 2 figures. To appear in 8 January 1998 issue of
Natur
Observing solar-like oscillations
We review techniques for measuring stellar oscillations in solar-type stars. Despite great efforts, no unambiguous detections have been made. A new method, based on monitoring the equivalent widths of strong lines, shows promise but is yet to be confirmed. We also discuss several subtleties, such as the need to correct for CCD non-linearities and the importance of data weighting
Planet formation in Binaries
Spurred by the discovery of numerous exoplanets in multiple systems, binaries
have become in recent years one of the main topics in planet formation
research. Numerous studies have investigated to what extent the presence of a
stellar companion can affect the planet formation process. Such studies have
implications that can reach beyond the sole context of binaries, as they allow
to test certain aspects of the planet formation scenario by submitting them to
extreme environments. We review here the current understanding on this complex
problem. We show in particular how each of the different stages of the
planet-formation process is affected differently by binary perturbations. We
focus especially on the intermediate stage of kilometre-sized planetesimal
accretion, which has proven to be the most sensitive to binarity and for which
the presence of some exoplanets observed in tight binaries is difficult to
explain by in-situ formation following the "standard" planet-formation
scenario. Some tentative solutions to this apparent paradox are presented. The
last part of our review presents a thorough description of the problem of
planet habitability, for which the binary environment creates a complex
situation because of the presence of two irradation sources of varying
distance.Comment: Review chapter to appear in "Planetary Exploration and Science:
Recent Advances and Applications", eds. S. Jin, N. Haghighipour, W.-H. Ip,
Springer (v2, numerous typos corrected
Planetary Dynamics and Habitable Planet Formation In Binary Star Systems
Whether binaries can harbor potentially habitable planets depends on several
factors including the physical properties and the orbital characteristics of
the binary system. While the former determines the location of the habitable
zone (HZ), the latter affects the dynamics of the material from which
terrestrial planets are formed (i.e., planetesimals and planetary embryos), and
drives the final architecture of the planets assembly. In order for a habitable
planet to form in a binary star system, these two factors have to work in
harmony. That is, the orbital dynamics of the two stars and their interactions
with the planet-forming material have to allow terrestrial planet formation in
the habitable zone, and ensure that the orbit of a potentially habitable planet
will be stable for long times. We have organized this chapter with the same
order in mind. We begin by presenting a general discussion on the motion of
planets in binary stars and their stability. We then discuss the stability of
terrestrial planets, and the formation of potentially habitable planets in a
binary-planetary system.Comment: 56 pages, 29 figures, chapter to appear in the book: Planets in
Binary Star Systems (Ed. N. Haghighipour, Springer publishing company
TOI-544 b: a potential water-world inside the radius valley in a two-planet system
We report on the precise radial velocity follow-up of TOI-544 (HD 290498),ã bright K star ( V = 10.8), which hostsã small transiting planet recently disco v ered by the Trãnsiting Exoplanet Survey Satellite (TESS) . We collected 122 high-resolution High Accuracy Radial velocity Planet Searcher (HARPS)ãnd HARPS-N spectra to spectroscopically confirm the transiting planetãnd measure its mass. The nearly 3-yr baseline of our follow-upãllowed us to unveil the presence ofãnãdditional, non-transiting, longer-period companion planet. We derivedã radiusãnd mass for the inner planet, TOI-544 b, of 2.018 ±0.076 R⊙and 2.89 ±0.48 M⊙, respectively, which givesã bulk density of 1 . 93 + 0 . 30 -0 . 25 g cm -3 . TOI-544 c hasã minimum mass of 21.5 ±2.0 M⊙and orbital period of 50.1 ±0.2 d. The low density of planet-b implies that it has eitherãn Earth-like rocky core withã hydrogenãtmosphere, orã composition which harboursã significant fraction of water. The composition interpretation is degenerate depending on the specific choice of planet interior models used. Additionally, TOI-544 b hasãn orbital period of 1.55 dãnd equilibrium temperature of 999 ±14 K, placing it within the predicted location of the radius valley, where few planetsãre expected. TOI-544 b isã top target for futureãtmospheric observations, for example with JWST , which would enable better constraints of the planet composition
Company for the Ultra-high Density, Ultra-short Period Sub-Earth GJ 367 b: Discovery of Two Additional Low-mass Planets at 11.5 and 34 Days
GJ 367 is a bright (V ≈ 10.2) M1 V star that has been recently found to host a transiting ultra-short period sub-Earth on a 7.7 hr orbit. With the aim of improving the planetary mass and radius and unveiling the inner architecture of the system, we performed an intensive radial velocity follow-up campaign with the HARPS spectrograph—collecting 371 high-precision measurements over a baseline of nearly 3 yr—and combined our Doppler measurements with new TESS observations from sectors 35 and 36. We found that GJ 367 b has a mass of M b = 0.633 ± 0.050 M ⊕ and a radius of R b = 0.699 ± 0.024 R ⊕, corresponding to precisions of 8% and 3.4%, respectively. This implies a planetary bulk density of ρ b = 10.2 ± 1.3 g cm−3, i.e., 85% higher than Earth’s density. We revealed the presence of two additional non-transiting low-mass companions with orbital periods of ∼11.5 and 34 days and minimum masses of M c sin i c = 4.13 ± 0.36 M ⊕ and M d sin i d = 6.03 ± 0.49 M ⊕, respectively, which lie close to the 3:1 mean motion commensurability. GJ 367 b joins the small class of high-density planets, namely the class of super-Mercuries, being the densest ultra-short period small planet known to date. Thanks to our precise mass and radius estimates, we explored the potential internal composition and structure of GJ 367 b, and found that it is expected to have an iron core with a mass fraction of 0.91 − 0.23 + 0.07 . How this iron core is formed and how such a high density is reached is still not clear, and we discuss the possible pathways of formation of such a small ultra-dense planet
TOI-733 b: A planet in the small-planet radius valley orbiting a Sun-like star
We report the discovery of a hot (Teq ≈ 1055 K) planet in the small-planet radius valley that transits the Sun-like star TOI-733. It was discovered as part of the KESPRINT follow-up program of TESS planets carried out with the HARPS spectrograph. TESS photometry from sectors 9 and 36 yields an orbital period of {equation presented} days and a radius of {equation presented}. Multi-dimensional Gaussian process modelling of the radial velocity measurements from HARPS and activity indicators gives a semi-amplitude of K = 2.23 ± 0.26 m s-1, translating into a planet mass of {equation presented}. These parameters imply that the planet is of moderate density ({equation presented}) and place it in the transition region between rocky and volatile-rich planets with H/He-dominated envelopes on the mass-radius diagram. Combining these with stellar parameters and abundances, we calculated planet interior and atmosphere models, which in turn suggest that TOI-733 b has a volatile-enriched, most likely secondary outer envelope, and may represent a highly irradiated ocean world. This is one of only a few such planets around G-type stars that are well characterised
A rocky composition for an Earth-sized exoplanet
Planets with sizes between that of Earth (with radius R[subscript circle in cross]) and Neptune (about 4 R[subscript circle in cross]) are now known to be common around Sun-like stars. Most such planets have been discovered through the transit technique, by which the planet’s size can be determined from the fraction of starlight blocked by the planet as it passes in front of its star. Measuring the planet’s mass—and hence its density, which is a clue to its composition—is more difficult. Planets of size 2–4 R[subscript circle in cross] have proved to have a wide range of densities, implying a diversity of compositions, but these measurements did not extend to planets as small as Earth. Here we report Doppler spectroscopic measurements of the mass of the Earth-sized planet Kepler-78b, which orbits its host star every 8.5 hours (ref. 6). Given a radius of 1.20 ± 0.09 R[subscript circle in cross] and a mass of 1.69 ± 0.41 M[subscript circle in cross], the planet’s mean density of 5.3 ± 1.8 g cm[superscript −3] is similar to Earth’s, suggesting a composition of rock and iron.Kepler Participating Scientist Progra
K2-280b -- a low density warm sub-Saturn around a mildly evolved star
We present an independent discovery and detailed characterisation of K2-280b, a transiting low density warm sub-Saturn in a 19.9-day moderately eccentric orbit (e = 0.35_{-0.04}^{+0.05}) from K2 campaign 7. A joint analysis of high precision HARPS, HARPS-N, and FIES radial velocity measurements and K2 photometric data indicates that K2-280b has a radius of R_b = 7.50 +/- 0.44 R_Earth and a mass of M_b = 37.1 +/- 5.6 M_Earth, yielding a mean density of 0.48_{-0.10}^{+0.13} g/cm^3. The host star is a mildly evolved G7 star with an effective temperature of T_{eff} = 5500 +/- 100 K, a surface gravity of log(g) = 4.21 +/- 0.05 (cgs), and an iron abundance of [Fe/H] = 0.33 +/- 0.08 dex, and with an inferred mass of M_star = 1.03 +/- 0.03 M_sun and a radius of R_star = 1.28 +/- 0.07 R_sun. We discuss the importance of K2-280b for testing formation scenarios of sub-Saturn planets and the current sample of this intriguing group of planets that are absent in the Solar System
The CARMENES Search for Exoplanets around M Dwarfs: A Low-mass Planet in the Temperate Zone of the Nearby K2-18
. I.R. and J.C.M. acknowledge support
by the Spanish Ministry of Economy and Competitiveness
(MINECO) and the Fondo Europeo de Desarrollo Regional
(FEDER) through grant ESP2016-80435-C2-1-R, as well as
the support of the Generalitat de Catalunya/CERCA program.
A.P.H. acknowledges the support of the Deutsche Forschungsgemeinschaft
(DFG) grant HA 3279/11-1. J.A.C.,
P.J.A. and D.M. acknowledge support by the Spanish
Ministry of Economy and Competitiveness (MINECO) from
projects AYA2016-79425-C3-1, 2, 3-P. V.J.S.B. is supported
by program AYA2015-69350-C3-2-P from Spanish Ministry
of Economy and Competitiveness (MINECO
- …