879 research outputs found
Exploiting the pathway structure of metabolism to reveal high-order epistasis
<p>Abstract</p> <p>Background</p> <p>Biological robustness results from redundant pathways that achieve an essential objective, e.g. the production of biomass. As a consequence, the biological roles of many genes can only be revealed through multiple knockouts that identify a <it>set </it>of genes as essential for a given function. The identification of such "epistatic" essential relationships between network components is critical for the understanding and eventual manipulation of robust systems-level phenotypes.</p> <p>Results</p> <p>We introduce and apply a network-based approach for genome-scale metabolic knockout design. We apply this method to uncover over 11,000 minimal knockouts for biomass production in an <it>in silico </it>genome-scale model of <it>E. coli</it>. A large majority of these "essential sets" contain 5 or more reactions, and thus represent complex epistatic relationships between components of the <it>E. coli </it>metabolic network.</p> <p>Conclusion</p> <p>The complex minimal biomass knockouts discovered with our approach illuminate robust essential systems-level roles for reactions in the <it>E. coli </it>metabolic network. Unlike previous approaches, our method yields results regarding high-order epistatic relationships and is applicable at the genome-scale.</p
Flux-sum analysis: a metabolite-centric approach for understanding the metabolic network
<p>Abstract</p> <p>Background</p> <p>Constraint-based flux analysis of metabolic network model quantifies the reaction flux distribution to characterize the state of cellular metabolism. However, metabolites are key players in the metabolic network and the current reaction-centric approach may not account for the effect of metabolite perturbation on the cellular physiology due to the inherent limitation in model formulation. Thus, it would be practical to incorporate the metabolite states into the model for the analysis of the network.</p> <p>Results</p> <p>Presented herein is a metabolite-centric approach of analyzing the metabolic network by including the turnover rate of metabolite, known as flux-sum, as key descriptive variable within the model formulation. By doing so, the effect of varying metabolite flux-sum on physiological change can be simulated by resorting to mixed integer linear programming. From the results, we could classify various metabolite types based on the flux-sum profile. Using the <it>i</it>AF1260 <it>in silico </it>metabolic model of <it>Escherichia coli</it>, we demonstrated that this novel concept complements the conventional reaction-centric analysis.</p> <p>Conclusions</p> <p>Metabolite flux-sum analysis elucidates the roles of metabolites in the network. In addition, this metabolite perturbation analysis identifies the key metabolites, implicating practical application which is achievable through metabolite flux-sum manipulation in the areas of biotechnology and biomedical research.</p
Spontaneous Reaction Silencing in Metabolic Optimization
Metabolic reactions of single-cell organisms are routinely observed to become
dispensable or even incapable of carrying activity under certain circumstances.
Yet, the mechanisms as well as the range of conditions and phenotypes
associated with this behavior remain very poorly understood. Here we predict
computationally and analytically that any organism evolving to maximize growth
rate, ATP production, or any other linear function of metabolic fluxes tends to
significantly reduce the number of active metabolic reactions compared to
typical non-optimal states. The reduced number appears to be constant across
the microbial species studied and just slightly larger than the minimum number
required for the organism to grow at all. We show that this massive spontaneous
reaction silencing is triggered by the irreversibility of a large fraction of
the metabolic reactions and propagates through the network as a cascade of
inactivity. Our results help explain existing experimental data on
intracellular flux measurements and the usage of latent pathways, shedding new
light on microbial evolution, robustness, and versatility for the execution of
specific biochemical tasks. In particular, the identification of optimal
reaction activity provides rigorous ground for an intriguing knockout-based
method recently proposed for the synthetic recovery of metabolic function.Comment: 34 pages, 6 figure
Integrating Flux Balance Analysis into Kinetic Models to Decipher the Dynamic Metabolism of Shewanella oneidensis MR-1
Shewanella oneidensis MR-1 sequentially utilizes lactate and its waste products (pyruvate and acetate) during batch culture. To decipher MR-1 metabolism, we integrated genome-scale flux balance analysis (FBA) into a multiple-substrate Monod model to perform the dynamic flux balance analysis (dFBA). The dFBA employed a static optimization approach (SOA) by dividing the batch time into small intervals (i.e., ∼400 mini-FBAs), then the Monod model provided time-dependent inflow/outflow fluxes to constrain the mini-FBAs to profile the pseudo-steady-state fluxes in each time interval. The mini-FBAs used a dual-objective function (a weighted combination of “maximizing growth rate” and “minimizing overall flux”) to capture trade-offs between optimal growth and minimal enzyme usage. By fitting the experimental data, a bi-level optimization of dFBA revealed that the optimal weight in the dual-objective function was time-dependent: the objective function was constant in the early growth stage, while the functional weight of minimal enzyme usage increased significantly when lactate became scarce. The dFBA profiled biologically meaningful dynamic MR-1 metabolisms: 1. the oxidative TCA cycle fluxes increased initially and then decreased in the late growth stage; 2. fluxes in the pentose phosphate pathway and gluconeogenesis were stable in the exponential growth period; and 3. the glyoxylate shunt was up-regulated when acetate became the main carbon source for MR-1 growth
MultiMetEval: comparative and multi-objective analysis of genome-scale metabolic models
Comparative metabolic modelling is emerging as a novel field, supported by the development of reliable and standardized approaches for constructing genome-scale metabolic models in high throughput. New software solutions are needed to allow efficient comparative analysis of multiple models in the context of multiple cellular objectives. Here, we present the user-friendly software framework Multi-Metabolic Evaluator (MultiMetEval), built upon SurreyFBA, which allows the user to compose collections of metabolic models that together can be subjected to flux balance analysis. Additionally, MultiMetEval implements functionalities for multi-objective analysis by calculating the Pareto front between two cellular objectives. Using a previously generated dataset of 38 actinobacterial genome-scale metabolic models, we show how these approaches can lead to exciting novel insights. Firstly, after incorporating several pathways for the biosynthesis of natural products into each of these models, comparative flux balance analysis predicted that species like Streptomyces that harbour the highest diversity of secondary metabolite biosynthetic gene clusters in their genomes do not necessarily have the metabolic network topology most suitable for compound overproduction. Secondly, multi-objective analysis of biomass production and natural product biosynthesis in these actinobacteria shows that the well-studied occurrence of discrete metabolic switches during the change of cellular objectives is inherent to their metabolic network architecture. Comparative and multi-objective modelling can lead to insights that could not be obtained by normal flux balance analyses. MultiMetEval provides a powerful platform that makes these analyses straightforward for biologists. Sources and binaries of MultiMetEval are freely available from https://github.com/PiotrZakrzewski/MetEval/downloads
Signatures of arithmetic simplicity in metabolic network architecture
Metabolic networks perform some of the most fundamental functions in living
cells, including energy transduction and building block biosynthesis. While
these are the best characterized networks in living systems, understanding
their evolutionary history and complex wiring constitutes one of the most
fascinating open questions in biology, intimately related to the enigma of
life's origin itself. Is the evolution of metabolism subject to general
principles, beyond the unpredictable accumulation of multiple historical
accidents? Here we search for such principles by applying to an artificial
chemical universe some of the methodologies developed for the study of genome
scale models of cellular metabolism. In particular, we use metabolic flux
constraint-based models to exhaustively search for artificial chemistry
pathways that can optimally perform an array of elementary metabolic functions.
Despite the simplicity of the model employed, we find that the ensuing pathways
display a surprisingly rich set of properties, including the existence of
autocatalytic cycles and hierarchical modules, the appearance of universally
preferable metabolites and reactions, and a logarithmic trend of pathway length
as a function of input/output molecule size. Some of these properties can be
derived analytically, borrowing methods previously used in cryptography. In
addition, by mapping biochemical networks onto a simplified carbon atom
reaction backbone, we find that several of the properties predicted by the
artificial chemistry model hold for real metabolic networks. These findings
suggest that optimality principles and arithmetic simplicity might lie beneath
some aspects of biochemical complexity
Large-Scale Bi-Level Strain Design Approaches and Mixed-Integer Programming Solution Techniques
The use of computational models in metabolic engineering has been increasing as more genome-scale metabolic models and computational approaches become available. Various computational approaches have been developed to predict how genetic perturbations affect metabolic behavior at a systems level, and have been successfully used to engineer microbial strains with improved primary or secondary metabolite production. However, identification of metabolic engineering strategies involving a large number of perturbations is currently limited by computational resources due to the size of genome-scale models and the combinatorial nature of the problem. In this study, we present (i) two new bi-level strain design approaches using mixed-integer programming (MIP), and (ii) general solution techniques that improve the performance of MIP-based bi-level approaches. The first approach (SimOptStrain) simultaneously considers gene deletion and non-native reaction addition, while the second approach (BiMOMA) uses minimization of metabolic adjustment to predict knockout behavior in a MIP-based bi-level problem for the first time. Our general MIP solution techniques significantly reduced the CPU times needed to find optimal strategies when applied to an existing strain design approach (OptORF) (e.g., from ∼10 days to ∼5 minutes for metabolic engineering strategies with 4 gene deletions), and identified strategies for producing compounds where previous studies could not (e.g., malate and serine). Additionally, we found novel strategies using SimOptStrain with higher predicted production levels (for succinate and glycerol) than could have been found using an existing approach that considers network additions and deletions in sequential steps rather than simultaneously. Finally, using BiMOMA we found novel strategies involving large numbers of modifications (for pyruvate and glutamate), which sequential search and genetic algorithms were unable to find. The approaches and solution techniques developed here will facilitate the strain design process and extend the scope of its application to metabolic engineering
- …