8 research outputs found
An improved fault detection classification and location scheme based on wavelet transform and artificial neural network for six phase transmission line using single end data only
Effect of Transition Metal Ion Doping on the Microstructure, Defect Evolution, and Magnetic and Magnetocaloric Properties of CuFeO2 Ceramics
A new species of Halectinosoma Vervoort, 1962 (Copepoda: Harpacticoida) from Argentina, including a key to species with unusual leg armature patterns, notes on wrongly assigned taxa and an updated key to ectinosomatid genera
CD36 in chronic kidney disease: novel insights and therapeutic opportunities
CD36 (also known as scavenger receptor B2) is a multifunctional receptor that mediates the binding and cellular uptake of long-chain fatty acids, oxidized lipids and phospholipids, advanced oxidation protein products, thrombospondin and advanced glycation end products, and has roles in lipid accumulation, inflammatory signalling, energy reprogramming, apoptosis and kidney fibrosis. Renal CD36 is mainly expressed in tubular epithelial cells, podocytes and mesangial cells, and is markedly upregulated in the setting of chronic kidney disease (CKD). As fatty acids are the preferred energy source for proximal tubule cells, a reduction in fatty acid oxidation in CKD affects kidney lipid metabolism by disrupting the balance between fatty acid synthesis, uptake and consumption. The outcome is intracellular lipid accumulation, which has an important role in the pathogenesis of kidney fibrosis. In experimental models, antagonist blockade or genetic knockout of CD36 prevents kidney injury, suggesting that CD36 could be a novel target for therapy. Here, we discuss the regulation and post-translational modification of CD36, its role in renal pathophysiology and its potential as a biomarker and as a therapeutic target for the prevention of kidney fibrosis
