7 research outputs found

    Phase space measure concentration for an ideal gas

    Full text link
    We point out that a special case of an ideal gas exhibits concentration of the volume of its phase space, which is a sphere, around its equator in the thermodynamic limit. The rate of approach to the thermodynamic limit is determined. Our argument relies on the spherical isoperimetric inequality of L\'{e}vy and Gromov.Comment: 15 pages, No figures, Accepted by Modern Physics Letters

    The geodesic rule for higher codimensional global defects

    Full text link
    We generalize the geodesic rule to the case of formation of higher codimensional global defects. Relying on energetic arguments, we argue that, for such defects, the geometric structures of interest are the totally geodesic submanifolds. On the other hand, stochastic arguments lead to a diffusion equation approach, from which the geodesic rule is deduced. It turns out that the most appropriate geometric structure that one should consider is the convex hull of the values of the order parameter on the causal volumes whose collision gives rise to the defect. We explain why these two approaches lead to similar results when calculating the density of global defects by using a theorem of Cheeger and Gromoll. We present a computation of the probability of formation of strings/vortices in the case of a system, such as nematic liquid crystals, whose vacuum is RP2\mathbb{R}P^2.Comment: 17 pages, no figures. To be published in Mod. Phys. Lett.
    corecore