229 research outputs found
Search for High-energy Neutrinos from Binary Neutron Star Merger GW170817 with ANTARES, IceCube, and the Pierre Auger Observatory
The Advanced LIGO and Advanced Virgo observatories recently discovered gravitational waves from a binary neutron star inspiral. A short gamma-ray burst (GRB) that followed the merger of this binary was also recorded by the FermiGamma-ray Burst Monitor (Fermi-GBM), and the Anti-Coincidence Shield for the Spectrometer for the International Gamma-Ray Astrophysics Laboratory(INTEGRAL), indicating particle acceleration by the source. The precise location of the event was determined by optical detections of emission following the merger. We searched for high-energy neutrinos from the merger in the GeV–EeV energy range using the Antares, IceCube, and Pierre Auger Observatories. No neutrinos directionally coincident with the source were detected within ±500 s around the merger time. Additionally, no MeV neutrino burst signal was detected coincident with the merger. We further carried out an extended search in the direction of the source for high-energy neutrinos within the 14 day period following the merger, but found no evidence of emission. We used these results to probe dissipation mechanisms in relativistic outflows driven by the binary neutron star merger. The non-detection is consistent with model predictions of short GRBs observed at a large off-axis angle
The neutrino velocity anomaly as an explanation of the missing observation of neutrinos in coincidence with GRB
The search for neutrinos emitted in coincidence with Gamma-Bay Burst has been
so far unsuccessfully. In this paper we show that the recent result reported by
the OPERA Collaboration on an early arrival time of muon neutrinos with respect
to the one computed assuming the speed of light in vacuum could explain the
null search for neutrinos in coincidence with Gamma-Ray Burst
The Antares Neutrino Telescope and Multi-Messenger Astronomy
Antares is currently the largest neutrino telescope operating in the Northern
Hemisphere, aiming at the detection of high-energy neutrinos from astrophysical
sources. Such observations would provide important clues about the processes at
work in those sources, and possibly help solve the puzzle of ultra-high energy
cosmic rays. In this context, Antares is developing several programs to improve
its capabilities of revealing possible spatial and/or temporal correlations of
neutrinos with other cosmic messengers: photons, cosmic rays and gravitational
waves. The neutrino telescope and its most recent results are presented,
together with these multi-messenger programs.Comment: 10 pages, 7 figures. Proceedings of the 14th Gravitational Wave Data
Analysis Workshop (GWDAW-14) in Roma - January 26th-29th, 201
- …
