229 research outputs found

    Search for High-energy Neutrinos from Binary Neutron Star Merger GW170817 with ANTARES, IceCube, and the Pierre Auger Observatory

    Get PDF
    The Advanced LIGO and Advanced Virgo observatories recently discovered gravitational waves from a binary neutron star inspiral. A short gamma-ray burst (GRB) that followed the merger of this binary was also recorded by the FermiGamma-ray Burst Monitor (Fermi-GBM), and the Anti-Coincidence Shield for the Spectrometer for the International Gamma-Ray Astrophysics Laboratory(INTEGRAL), indicating particle acceleration by the source. The precise location of the event was determined by optical detections of emission following the merger. We searched for high-energy neutrinos from the merger in the GeV–EeV energy range using the Antares, IceCube, and Pierre Auger Observatories. No neutrinos directionally coincident with the source were detected within ±500 s around the merger time. Additionally, no MeV neutrino burst signal was detected coincident with the merger. We further carried out an extended search in the direction of the source for high-energy neutrinos within the 14 day period following the merger, but found no evidence of emission. We used these results to probe dissipation mechanisms in relativistic outflows driven by the binary neutron star merger. The non-detection is consistent with model predictions of short GRBs observed at a large off-axis angle

    The neutrino velocity anomaly as an explanation of the missing observation of neutrinos in coincidence with GRB

    Full text link
    The search for neutrinos emitted in coincidence with Gamma-Bay Burst has been so far unsuccessfully. In this paper we show that the recent result reported by the OPERA Collaboration on an early arrival time of muon neutrinos with respect to the one computed assuming the speed of light in vacuum could explain the null search for neutrinos in coincidence with Gamma-Ray Burst

    The Antares Neutrino Telescope and Multi-Messenger Astronomy

    Full text link
    Antares is currently the largest neutrino telescope operating in the Northern Hemisphere, aiming at the detection of high-energy neutrinos from astrophysical sources. Such observations would provide important clues about the processes at work in those sources, and possibly help solve the puzzle of ultra-high energy cosmic rays. In this context, Antares is developing several programs to improve its capabilities of revealing possible spatial and/or temporal correlations of neutrinos with other cosmic messengers: photons, cosmic rays and gravitational waves. The neutrino telescope and its most recent results are presented, together with these multi-messenger programs.Comment: 10 pages, 7 figures. Proceedings of the 14th Gravitational Wave Data Analysis Workshop (GWDAW-14) in Roma - January 26th-29th, 201
    corecore