9 research outputs found

    In situ determination of the remote sensing reflectance: an inter-comparison

    Get PDF
    Inter-comparison of data products from simultaneous measurements performed with independent systems and methods is a viable approach to assess the consistency of data and additionally to investigate uncertainties. Within such a context the inter-comparison called Assessment of In Situ Radiometric Capabilities for Coastal Water Remote Sensing Applications (ARC), was carried out at the Acqua Alta Oceanographic Tower in the northern Adriatic Sea to explore the accuracy of in situ data products from various in- and above-water optical systems and methods. Measurements were performed under almost ideal conditions including: a stable deployment platform, clear sky, relatively low sun zenith angles and moderately low sea state. Additionally, all optical sensors involved in the experiment were inter-calibrated through a post-field absolute radiometric calibration performed with the same standards and methods. Inter-compared data products include: spectral water-leaving radiance Lw,above-water downward irradiance Ed(0+) and remote sensing reflectance Rrs. Data products from the various measurement systems/methods were directly compared to those from a single reference system/method. Results for Rrs indicate spectrally averaged values of relative differences comprised between -1 and +6%, while spectrally averaged absolute values of relative differences vary from approximately 6% for the above-water systems/methods to 9% for buoy-based systems/methods. The good agreement between Rrs spectral relative differences and estimates of combined uncertainties of the inter-compared systems/methods is noteworthy.JRC.H.1-Water Resource

    Optical Water Type Guided Approach to Estimate Optical Water Quality Parameters

    No full text
    Currently, water monitoring programs are mainly based on in situ measurements; however, this approach is time-consuming, expensive, and may not reflect the status of the whole water body. The availability of Multispectral Imager (MSI) and Ocean and Land Colour Instrument (OLCI) free data with high spectral, spatial, and temporal resolution has increased the potential of adding remote sensing techniques into monitoring programs, leading to improvement of the quality of monitoring water. This study introduced an optical water type guided approach for boreal regions inland and coastal waters to estimate optical water quality parameters, such as the concentration of chlorophyll-a (Chl-a) and total suspended matter (TSM), the absorption coefficient of coloured dissolved organic matter at a wavelength of 442 nm (aCDOM(442)), and the Secchi disk depth, from hyperspectral, OLCI, and MSI reflectance data. This study was based on data from 51 Estonian and Finnish lakes and from the Baltic Sea coastal area, which altogether were used in 415 in situ measurement stations and covered a wide range of optical water quality parameters (Chl-a: 0.5–215.2 mg·m−3; TSM: 0.6–46.0 mg·L−1; aCDOM(442): 0.4–43.7 m−1; and Secchi disk depth: 0.2–12.2 m). For retrieving optical water quality parameters from reflectance spectra, we tested 132 empirical algorithms. The study results describe the best algorithm for each optical water type for each spectral range and for each optical water quality parameter. The correlation was high, from 0.87 up to 0.93, between the in situ measured optical water quality parameters and the parameters predicted by the optical water type guided approach

    Results from Verification of Reference Irradiance and Radiance Sources Laboratory Calibration Experiment Campaign

    Get PDF
    We present the results from Verification of Reference Irradiance and Radiance Sources Laboratory Calibration Experiment Campaign. Ten international laboratories took part in the measurements. The spectral irradiance comparison included the measurements of the 1000 W tungsten halogen filament lamps in the spectral range of 350 nm–900 nm in the pilot laboratory. The radiance comparison took a form of round robin where each participant in turn received two transfer radiometers and did the radiance calibration in their own laboratory. The transfer radiometers have seven spectral bands covering the wavelength range from 400 nm–700 nm. The irradiance comparison results showed an agreement between all lamps within ±1.5%. The radiance comparison results presented higher than expected discrepancies at the level of ±4%. Additional investigation to determine the causes for these discrepancies identified them as a combination of the size-of-source effect and instrument effective field of view that affected some of the results
    corecore