11,433 research outputs found

    Teleparallel Spin Connection

    Get PDF
    A new expression for the spin connection of teleparallel gravity is proposed, given by minus the contorsion tensor plus a zero connection. The corresponding minimal coupling is covariant under local Lorentz transformation, and equivalent to the minimal coupling prescription of general relativity. With this coupling prescription, therefore, teleparallel gravity turns out to be fully equivalent to general relativity, even in the presence of spinor fields.Comment: 2 pages, RevTeX, to appear in Phys. Rev D (Brief Report

    Mass Generation from Lie Algebra Extensions

    Full text link
    Applied to the electroweak interactions, the theory of Lie algebra extensions suggests a mechanism by which the boson masses are generated without resource to spontaneous symmetry breaking. It starts from a gauge theory without any additional scalar field. All the couplings predicted by the Weinberg-Salam theory are present, and a few others which are nevertheless consistent within the model.Comment: 11 pages; revtex; title and PACS have been changed; comments included in the manuscrip

    Gravitation and Duality Symmetry

    Full text link
    By generalizing the Hodge dual operator to the case of soldered bundles, and working in the context of the teleparallel equivalent of general relativity, an analysis of the duality symmetry in gravitation is performed. Although the basic conclusion is that, at least in the general case, gravitation is not dual symmetric, there is a particular theory in which this symmetry shows up. It is a self dual (or anti-self dual) teleparallel gravity in which, due to the fact that it does not contribute to the interaction of fermions with gravitation, the purely tensor part of torsion is assumed to vanish. The ensuing fermionic gravitational interaction is found to be chiral. Since duality is intimately related to renormalizability, this theory may eventually be more amenable to renormalization than teleparallel gravity or general relativity.Comment: 7 pages, no figures. Version 2: minor presentation changes, references added. Accepted for publication in Int. J. Mod. Phys.

    Renormalization of the N=1 Abelian Super-Chern-Simons Theory Coupled to Parity-Preserving Matter

    Full text link
    We analyse the renormalizability of an Abelian N=1 super-Chern-Simons model coupled to parity-preserving matter on the light of the regularization independent algebraic method. The model shows to be stable under radiative corrections and to be gauge anomaly free.Comment: Latex, 7 pages, no figure

    Teleparallel Equivalent of Non-Abelian Kaluza-Klein Theory

    Get PDF
    Based on the equivalence between a gauge theory for the translation group and general relativity, a teleparallel version of the non-abelian Kaluza-Klein theory is constructed. In this theory, only the fiber-space turns out to be higher-dimensional, spacetime being kept always four-dimensional. The resulting model is a gauge theory that unifies, in the Kaluza-Klein sense, gravitational and gauge fields. In contrast to the ordinary Kaluza-Klein models, this theory defines a natural length-scale for the compact sub-manifold of the fiber space, which is shown to be of the order of the Planck length.Comment: Revtex4, 7 pages, no figures, to appear in Phys. Rev.
    corecore