16,111 research outputs found

    Future dynamics in f(R) theories

    Full text link
    The f(R)f(R) gravity theories provide an alternative way to explain the current cosmic acceleration without invoking dark energy matter component. However, the freedom in the choice of the functional forms of f(R)f(R) gives rise to the problem of how to constrain and break the degeneracy among these gravity theories on theoretical and/or observational grounds. In this paper to proceed further with the investigation on the potentialities, difficulties and limitations of f(R)f(R) gravity, we examine the question as to whether the future dynamics can be used to break the degeneracy between f(R)f(R) gravity theories by investigating the future dynamics of spatially homogeneous and isotropic dust flat models in two f(R)f(R) gravity theories, namely the well known f(R)=R+αRnf(R) = R + \alpha R^{n} gravity and another by A. Aviles et al., whose motivation comes from the cosmographic approach to f(R)f(R) gravity. To this end we perform a detailed numerical study of the future dynamic of these flat model in these theories taking into account the recent constraints on the cosmological parameters made by the Planck team. We show that besides being powerful for discriminating between f(R)f(R) gravity theories, the future dynamics technique can also be used to determine the fate of the Universe in the framework of these f(R)f(R) gravity theories. Moreover, there emerges from our numerical analysis that if we do not invoke a dark energy component with equation-of-state parameter ω<1\omega < -1 one still has dust flat FLRW solution with a big rip, if gravity deviates from general relativity via f(R)=R+αRnf(R) = R + \alpha R^n . We also show that FLRW dust solutions with f<0f''<0 do not necessarily lead to singularity.Comment: 12 pages, 8 figures. V2: Generality and implications of the results are emphasized, connection with the recent literature improved, typos corrected, references adde

    Memory effects on the statistics of fragmentation

    Full text link
    We investigate through extensive molecular dynamics simulations the fragmentation process of two-dimensional Lennard-Jones systems. After thermalization, the fragmentation is initiated by a sudden increment to the radial component of the particles' velocities. We study the effect of temperature of the thermalized system as well as the influence of the impact energy of the ``explosion'' event on the statistics of mass fragments. Our results indicate that the cumulative distribution of fragments follows the scaling ansatz F(m)mαexp[(m/m0)γ]F(m)\propto m^{-\alpha}\exp{[-(m/m_0)^\gamma]}, where mm is the mass, m0m_0 and γ\gamma are cutoff parameters, and α\alpha is a scaling exponent that is dependent on the temperature. More precisely, we show clear evidence that there is a characteristic scaling exponent α\alpha for each macroscopic phase of the thermalized system, i.e., that the non-universal behavior of the fragmentation process is dictated by the state of the system before it breaks down.Comment: 5 pages, 8 figure

    Travel of studies: cities of João Pessoa, Maceio, Natal and Recife: a look on the urban space and brazilian architectural production

    Get PDF
    Ponencia presentada a Session 8: Dimensiones psicosociales de la arquitectura y el urbanismo / Psycological dimensions of architecture and planningThis article aims to present the methodology and the final results of the elective course “Travel of Studies” which belongs to the new pedagogical project from the Architecture and Urbanism course at the University Federal of Pernambuco. It was offered for the first time in 2013.The discipline was organized to occur in four long weekends through visits of four capitals of the Northeast of Brazil: Recife, João Pessoa, Natal and Maceió. The purpose was to allow the students to apprehend the cities through four axis: intervention in historical center (axis 1), production of urban space (axis 2), production of coastline space (axis 3) and contemporary architecture (axis 4). After the four visits were complete, we prepared a poster with the comparison of the cities based on the identification of the similarities and differences of each axis we have studied

    SAMplus: adaptive optics at optical wavelengths for SOAR

    Full text link
    Adaptive Optics (AO) is an innovative technique that substantially improves the optical performance of ground-based telescopes. The SOAR Adaptive Module (SAM) is a laser-assisted AO instrument, designed to compensate ground-layer atmospheric turbulence in near-IR and visible wavelengths over a large Field of View. Here we detail our proposal to upgrade SAM, dubbed SAMplus, that is focused on enhancing its performance in visible wavelengths and increasing the instrument reliability. As an illustration, for a seeing of 0.62 arcsec at 500 nm and a typical turbulence profile, current SAM improves the PSF FWHM to 0.40 arcsec, and with the upgrade we expect to deliver images with a FWHM of 0.34\approx0.34 arcsec -- up to 0.23 arcsec FWHM PSF under good seeing conditions. Such capabilities will be fully integrated with the latest SAM instruments, putting SOAR in an unique position as observatory facility.Comment: To appear in Proc. SPIE 10703 (Ground-based and Airborne Instrumentation for Astronomy VII; SPIEastro18

    Rotation intrinsic spin coupling--the parallelism description

    Get PDF
    For the Dirac particle in the rotational system, the rotation induced inertia effect is analogously treated as the modification of the "spin connection" on the Dirac equation in the flat spacetime, which is determined by the equivalent tetrad. From the point of view of parallelism description of spacetime, the obtained torsion axial-vector is just the rotational angular velocity, which is included in the "spin connection". Furthermore the axial-vector spin coupling induced spin precession is just the rotation-spin(1/2) interaction predicted by Mashhoon. Our derivation treatment is straightforward and simplified in the geometrical meaning and physical conception, however the obtained conclusions are consistent with that of the other previous work.Comment: 10 pages, no figur

    On bare masses in time-symmetric initial-value solutions for two black holes

    Full text link
    The Brill-Lindquist time-symmetric initial-value solution for two uncharged black holes is rederived using the Hamiltonian constraint equation with Dirac delta distributions as a source for the binary black-hole field. The bare masses of the Brill-Lindquist black holes are introduced in a way which is applied, after straightforward modification, to the Misner-Linquist binary black-hole solution.Comment: LaTeX, 4 page
    corecore