34,286 research outputs found

    Froissart Bound on Total Cross-section without Unknown Constants

    Full text link
    We determine the scale of the logarithm in the Froissart bound on total cross-sections using absolute bounds on the D-wave below threshold for ππ\pi\pi scattering. E.g. for π0π0\pi^0 \pi^0 scattering we show that for c.m. energy s\sqrt{s}\rightarrow \infty , σˉtot(s,)ssdsσtot(s)/s2π(mπ)2[ln(s/s0)+(1/2)lnln(s/s0)+1]2\bar{\sigma}_{tot}(s,\infty)\equiv s\int_{s} ^{\infty} ds'\sigma_{tot}(s')/s'^2 \leq \pi (m_{\pi})^{-2} [\ln (s/s_0)+(1/2)\ln \ln (s/s_0) +1]^2 where mπ2/s0=17ππ/2m_\pi^2/s_0= 17\pi \sqrt{\pi/2} .Comment: 6 page

    Froissart Bound on Inelastic Cross Section Without Unknown Constants

    Get PDF
    Assuming that axiomatic local field theory results hold for hadron scattering, Andr\'e Martin and S. M. Roy recently obtained absolute bounds on the D-wave below threshold for pion-pion scattering and thereby determined the scale of the logarithm in the Froissart bound on total cross sections in terms of pion mass only. Previously, Martin proved a rigorous upper bound on the inelastic cross-section σinel\sigma_{inel} which is one-fourth of the corresponding upper bound on σtot\sigma_{tot}, and Wu, Martin,Roy and Singh improved the bound by adding the constraint of a given σtot\sigma_{tot}. Here we use unitarity and analyticity to determine, without any high energy approximation, upper bounds on energy averaged inelastic cross sections in terms of low energy data in the crossed channel. These are Froissart-type bounds without any unknown coefficient or unknown scale factors and can be tested experimentally. Alternatively, their asymptotic forms,together with the Martin-Roy absolute bounds on pion-pion D-waves below threshold, yield absolute bounds on energy-averaged inelastic cross sections. E.g. for π0π0\pi^0 \pi^0 scattering, defining σinel=σtot(σπ0π0π0π0+σπ0π0π+π)\sigma_{inel}=\sigma_{tot} -\big (\sigma^{\pi^0 \pi^0 \rightarrow \pi^0 \pi^0} + \sigma^{\pi^0 \pi^0 \rightarrow \pi^+ \pi^-} \big ),we show that for c.m. energy s\sqrt{s}\rightarrow \infty , σˉinel(s,)ssdsσinel(s)/s2(π/4)(mπ)2[ln(s/s1)+(1/2)lnln(s/s1)+1]2\bar{\sigma}_{inel }(s,\infty)\equiv s\int_{s} ^{\infty } ds'\sigma_{inel }(s')/s'^2 \leq (\pi /4) (m_{\pi })^{-2} [\ln (s/s_1)+(1/2)\ln \ln (s/s_1) +1]^2 where 1/s1=34π2πmπ21/s_1= 34\pi \sqrt{2\pi }\>m_{\pi }^{-2} . This bound is asymptotically one-fourth of the corresponding Martin-Roy bound on the total cross section, and the scale factor s1s_1 is one-fourth of the scale factor in the total cross section bound. The average over the interval (s,2s) of the inelastic π0π0\pi^0 \pi^0 cross section has a bound of the same form with 1/s11/s_1 replaced by 1/s2=2/s11/s_2=2/s_1 .Comment: 9 pages. Submitted to Physical Review

    Results of a botanical expedition to Mount Roraima, Guyana : 2., Lichens

    Get PDF
    Lichen exploration of the Upper Mazaruni District, Guyana yielded 273 species, of which 179 were found for the first time in the Guianas and 13 were as yet undescribed. A list of all taxa encountered is presented, with indications of habitat and distribution in the investigated area as well as first descriptions for the following 7 species: Buellia aptrootii, Byssoloma farkasii, Myriotrema guianense, M. neofrondosum, M. subdactyliferum, Ocellularia astrolucens, and Thelotrema albomaculatum. Mazosia bambusae is recorded for the first time from the Neotropics. The richest areas for lichens appear to be the rocky tablelands with scrub vegetation on top of the lower mountains. The slopes of Mount Roraima are of special interest because they support some montane species which are unlikely to be found elsewhere in the Guianas; otherwise they are less rich in lichens, probably because of the high humidity, which favours bryophyte growth
    corecore