90,538 research outputs found
Atomic-phase interference devices based on ring-shaped Bose-Einstein condensates: Two ring case
We theoretically investigate the ground-state properties and quantum dynamics
of a pair of adjacent ring-shaped Bose-Einstein condensates that are coupled
via tunneling. This device, which is the analogue of a symmetric
superconducting quantum interference device, is the simplest version of what we
term an Atomic-Phase Interference Device (APHID). The two-ring APHID is shown
to be sensitive to rotation.Comment: 8 page
New interpretation of variational principles for gauge theories. I. Cyclic coordinate alternative to ADM split
I show how there is an ambiguity in how one treats auxiliary variables in
gauge theories including general relativity cast as 3 + 1 geometrodynamics.
Auxiliary variables may be treated pre-variationally as multiplier coordinates
or as the velocities corresponding to cyclic coordinates. The latter treatment
works through the physical meaninglessness of auxiliary variables' values
applying also to the end points (or end spatial hypersurfaces) of the
variation, so that these are free rather than fixed. [This is also known as
variation with natural boundary conditions.] Further principles of dynamics
workings such as Routhian reduction and the Dirac procedure are shown to have
parallel counterparts for this new formalism. One advantage of the new scheme
is that the corresponding actions are more manifestly relational. While the
electric potential is usually regarded as a multiplier coordinate and Arnowitt,
Deser and Misner have regarded the lapse and shift likewise, this paper's
scheme considers new {\it flux}, {\it instant} and {\it grid} variables whose
corresponding velocities are, respectively, the abovementioned previously used
variables. This paper's way of thinking about gauge theory furthermore admits
interesting generalizations, which shall be provided in a second paper.Comment: 11 page
Quantum Cosmological Relational Model of Shape and Scale in 1-d
Relational particle models are useful toy models for quantum cosmology and
the problem of time in quantum general relativity. This paper shows how to
extend existing work on concrete examples of relational particle models in 1-d
to include a notion of scale. This is useful as regards forming a tight analogy
with quantum cosmology and the emergent semiclassical time and hidden time
approaches to the problem of time. This paper shows furthermore that the
correspondence between relational particle models and classical and quantum
cosmology can be strengthened using judicious choices of the mechanical
potential. This gives relational particle mechanics models with analogues of
spatial curvature, cosmological constant, dust and radiation terms. A number of
these models are then tractable at the quantum level. These models can be used
to study important issues 1) in canonical quantum gravity: the problem of time,
the semiclassical approach to it and timeless approaches to it (such as the
naive Schrodinger interpretation and records theory). 2) In quantum cosmology,
such as in the investigation of uniform states, robustness, and the qualitative
understanding of the origin of structure formation.Comment: References and some more motivation adde
Deep levels and radiation effects in p-InP
A survey was conducted on past studies of hole traps in InP. An experiment was designed to evaluate hole traps in Zn-doped InP after fabrication, after electron irradiation and after annealing using deep level transient spectroscopy. Data similar to that of Yamaguchi was seen with observation of both radiation-induced hole and electron traps at E sub A=0.45 eV and 0.03 eV, respectively. Both traps are altered by annealing. It is also shown that trap parameters for surface-barrier devices are influenced by many factors such as bias voltage, which probes traps at different depths below the surface. These devices require great care in data evaluation
Variable conductance heat pipe technology
Research and development programs in variable conductance heat pipe technology were conducted. The treatment has been comprehensive, involving theoretical and/or experimental studies in hydrostatics, hydrodynamics, heat transfer into and out of the pipe, fluid selection, and materials compatibility, in addition to the principal subject of variable conductance control techniques. Efforts were not limited to analytical work and laboratory experimentation, but extended to the development, fabrication and test of spacecraft hardware, culminating in the successful flight of the Ames Heat Pipe Experiment on the OAO-C spacecraft
Deterministic creation, pinning, and manipulation of quantized vortices in a Bose-Einstein condensate
We experimentally and numerically demonstrate deterministic creation and
manipulation of a pair of oppositely charged singly quantized vortices in a
highly oblate Bose-Einstein condensate (BEC). Two identical blue-detuned,
focused Gaussian laser beams that pierce the BEC serve as repulsive obstacles
for the superfluid atomic gas; by controlling the positions of the beams within
the plane of the BEC, superfluid flow is deterministically established around
each beam such that two vortices of opposite circulation are generated by the
motion of the beams, with each vortex pinned to the \emph{in situ} position of
a laser beam. We study the vortex creation process, and show that the vortices
can be moved about within the BEC by translating the positions of the laser
beams. This technique can serve as a building block in future experimental
techniques to create, on-demand, deterministic arrangements of few or many
vortices within a BEC for precise studies of vortex dynamics and vortex
interactions.Comment: 9 pages, 7 figure
Pilot Human Factors in Stall/Spin Accidents of Supersonic Fighter Aircraft
A study has been made of pilot human factors related to stall/spin accidents of supersonic fighter aircraft. The military specifications for flight at high angles of attack are examined. Several pilot human factors problems related to stall/spin are discussed. These problems include (1) unsatisfactory nonvisual warning cues; (2) the inability of the pilot to quickly determine if the aircraft is spinning out of control, or to recognize the type of spin; (3) the inability of the pilot to decide on and implement the correct spin recovery technique; (4) the inability of the pilot to move, caused by high angular rotation; and (5) the tendency of pilots to wait too long in deciding to abandon the irrecoverable aircraft. Psycho-physiological phenomena influencing pilot's behavior in stall/spin situations include (1) channelization of sensory inputs, (2) limitations in precisely controlling several muscular inputs, (3) inaccurate judgment of elapsed time, and (4) disorientation of vestibulo-ocular inputs. Results are given of pilot responses to all these problems in the F14A, F16/AB, and F/A-18A aircraft. The use of departure spin resistance and automatic spin prevention systems incorporated on recent supersonic fighters are discussed. These systems should help to improve the stall/spin accident record with some compromise in maneuverability
The development of a novel large area building integrated solar collector for pool heating
Unglazed solar collectors have often been used a means of providing low cost heating to swimming pools. However, these systems are typically polymer style “mats” that are laid on top of a roof, often leading to poor aesthetics due to their lack of integration with the building itself. This study charts the development of a novel large area unglazed building integrated solar pool heating system (BIT), based on long run sheet metal roofing, from its initial conceptualisation through to its implementation. It discusses the design of the building integrated solar collector modules, the assessment of their performance through theoretical modelling and experimental validation. Subsequently, it shows the scaling of laboratory scale testing to a large area array through modelling and discusses the performance of the system in the “as-built” configuration. In doing this, it provides a succinct illustration of the design process for the development of the University of Waikato’s building integrated pool heating system
- …