2,777 research outputs found
Parity (and time-reversal) anomaly in a semiconductor
The physics of a parity anomaly, potentially observable in a narrow-gap
semiconductor, is revisited. Fradkin, Dagotto, and Boyanovsky have suggested
that a Hall current of anomalous parity can be induced by a Peierls distortion
on a domain wall. I argue that a perturbation inducing the parity anomaly must
break the time reversal symmetry, which rules out the Peierls distortion as a
potential cause. I list all possible perturbations that can generate the
anomaly.Comment: 11 pages, 1 figure. Sign errors fixe
Kolmogorov turbulence, Anderson localization and KAM integrability
The conditions for emergence of Kolmogorov turbulence, and related weak wave
turbulence, in finite size systems are analyzed by analytical methods and
numerical simulations of simple models. The analogy between Kolmogorov energy
flow from large to small spacial scales and conductivity in disordered solid
state systems is proposed. It is argued that the Anderson localization can stop
such an energy flow. The effects of nonlinear wave interactions on such a
localization are analyzed. The results obtained for finite size system models
show the existence of an effective chaos border between the
Kolmogorov-Arnold-Moser (KAM) integrability at weak nonlinearity, when energy
does not flow to small scales, and developed chaos regime emerging above this
border with the Kolmogorov turbulent energy flow from large to small scales.Comment: 8 pages, 6 figs, EPJB style
Time-frequency detection algorithm for gravitational wave bursts
An efficient algorithm is presented for the identification of short bursts of
gravitational radiation in the data from broad-band interferometric detectors.
The algorithm consists of three steps: pixels of the time-frequency
representation of the data that have power above a fixed threshold are first
identified. Clusters of such pixels that conform to a set of rules on their
size and their proximity to other clusters are formed, and a final threshold is
applied on the power integrated over all pixels in such clusters. Formal
arguments are given to support the conjecture that this algorithm is very
efficient for a wide class of signals. A precise model for the false alarm rate
of this algorithm is presented, and it is shown using a number of
representative numerical simulations to be accurate at the 1% level for most
values of the parameters, with maximal error around 10%.Comment: 26 pages, 15 figures, to appear in PR
Re-localization due to finite response times in a nonlinear Anderson chain
We study a disordered nonlinear Schr\"odinger equation with an additional
relaxation process having a finite response time . Without the relaxation
term, , this model has been widely studied in the past and numerical
simulations showed subdiffusive spreading of initially localized excitations.
However, recently Caetano et al.\ (EPJ. B \textbf{80}, 2011) found that by
introducing a response time , spreading is suppressed and any
initially localized excitation will remain localized. Here, we explain the lack
of subdiffusive spreading for by numerically analyzing the energy
evolution. We find that in the presence of a relaxation process the energy
drifts towards the band edge, which enforces the population of fewer and fewer
localized modes and hence leads to re-localization. The explanation presented
here is based on previous findings by the authors et al.\ (PRE \textbf{80},
2009) on the energy dependence of thermalized states.Comment: 3 pages, 4 figure
The Electron Spectral Function in Two-Dimensional Fractionalized Phases
We study the electron spectral function of various zero-temperature
spin-charge separated phases in two dimensions. In these phases, the electron
is not a fundamental excitation of the system, but rather ``decays'' into a
spin-1/2 chargeless fermion (the spinon) and a spinless charge e boson (the
chargon). Using low-energy effective theories for the spinons (d-wave pairing
plus possible N\'{e}el order), and the chargons (condensed or quantum
disordered bosons), we explore three phases of possible relevance to the
cuprate superconductors: 1) AF*, a fractionalized antiferromagnet where the
spinons are paired into a state with long-ranged N\'{e}el order and the
chargons are 1/2-filled and (Mott) insulating, 2) the nodal liquid, a
fractionalized insulator where the spinons are d-wave paired and the chargons
are uncondensed, and 3) the d-wave superconductor, where the chargons are
condensed and the spinons retain a d-wave gap. Working within the gauge
theory of such fractionalized phases, our results should be valid at scales
below the vison gap. However, on a phenomenological level, our results should
apply to any spin-charge separated system where the excitations have these
low-energy effective forms. Comparison with ARPES data in the undoped,
pseudogapped, and superconducting regions is made.Comment: 10 page
Solitons, solitonic vortices, and vortex rings in a confined Bose-Einstein condensate
Quasi-one-dimensional solitons that may occur in an elongated Bose-Einstein
condensate become unstable at high particle density. We study two basic modes
of instability and the corresponding bifurcations to genuinely
three-dimensional solitary waves such as axisymmetric vortex rings and
non-axisymmetric solitonic vortices. We calculate the profiles of the above
structures and examine their dependence on the velocity of propagation along a
cylindrical trap. At sufficiently high velocity, both the vortex ring and the
solitonic vortex transform into an axisymmetric soliton. We also calculate the
energy-momentum dispersions and show that a Lieb-type mode appears in the
excitation spectrum for all particle densities.Comment: RevTeX 9 pages, 9 figure
Split vortices in optically coupled Bose-Einstein condensates
We study a rotating two-component Bose-Einstein condensate in which an
optically induced Josephson coupling allows for population transfer between the
two species. In a regime where separation of species is favored, the ground
state of the rotating system displays domain walls with velocity fields normal
to them. Such a configuration looks like a vortex split into two halves, with
atoms circulating around the vortex and changing their internal state in a
continuous way.Comment: 4 EPS pictures, 4 pages; Some errata have been corrected and thep
resentation has been slightly revise
Anderson-Yuval approach to the multichannel Kondo problem
We analyze the structure of the perturbation expansion of the general
multichannel Kondo model with channel anisotropic exchange couplings and in the
presence of an external magnetic field, generalizing to this case the
Anderson-Yuval technique. For two channels, we are able to map the Kondo model
onto a generalized resonant level model. Limiting cases in which the equivalent
resonant level model is solvable are identified. The solution correctly
captures the properties of the two channel Kondo model, and also allows an
analytic description of the cross-over from the non Fermi liquid to the Fermi
liquid behavior caused by the channel anisotropy.Comment: 23 pages, ReVTeX, 4 figures av. on reques
Operator-Algebraic Approach to the Yrast Spectrum of Weakly Interacting Trapped Bosons
We present an operator-algebraic approach to deriving the low-lying
quasi-degenerate spectrum of weakly interacting trapped N bosons with total
angular momentum \hbar L for the case of small L/N, demonstrating that the
lowest-lying excitation spectrum is given by 27 g n_3(n_3-1)/34, where g is the
strength of the repulsive contact interaction and n_3 the number of excited
octupole quanta. Our method provides constraints for these quasi-degenerate
many-body states and gives higher excitation energies that depend linearly on
N.Comment: 7 pages, one figur
Vortex phase diagram in trapped Bose-Einstein condensation
The vortex phase diagram in the external rotation frequency versus
temperature is calculated for dilute Bose-Einstein condensed gases. It is
determined within the Bogoliubov-Popov theory for a finite temperature where
the condensate and non-condensate fractions are treated in an equal footing.
The temperature dependences of various thermodynamic instability lines for the
vortex nucleation are computed to construct the phase diagram. Experiments are
proposed to resolve a recent controversy on the vortex creation problem
associated with the quantized vortex observation in Rb atom gases.Comment: 11 pages, 8 figure
- …
