128,992 research outputs found
Constraining coherent low frequency radio flares from compact binary mergers
The presence and detectability of coherent radio emission from compact binary
mergers (containing at least one neutron star) remains poorly constrained due
to large uncertainties in the models. These compact binary mergers may
initially be detected as Short Gamma-ray Bursts (SGRBs) or via their
gravitational wave emission. Several radio facilities have developed rapid
response modes enabling them to trigger on these events and search for this
emission. For this paper, we constrain this coherent radio emission using the
deepest available constraints for GRB 150424A, which were obtained via a
triggered observation with the Murchison Widefield Array. We then expand this
analysis to determine the properties of magnetar merger remnants that may be
formed via a general population of binary neutron star mergers. Our results
demonstrate that many of the potential coherent emission mechanisms that have
been proposed for such events can be detected or very tightly constrained by
the complementary strategies used by the current generation of low-frequency
radio telescopes.Comment: 19 pages, submitted to MNRA
Quantum Cosmological Relational Model of Shape and Scale in 1-d
Relational particle models are useful toy models for quantum cosmology and
the problem of time in quantum general relativity. This paper shows how to
extend existing work on concrete examples of relational particle models in 1-d
to include a notion of scale. This is useful as regards forming a tight analogy
with quantum cosmology and the emergent semiclassical time and hidden time
approaches to the problem of time. This paper shows furthermore that the
correspondence between relational particle models and classical and quantum
cosmology can be strengthened using judicious choices of the mechanical
potential. This gives relational particle mechanics models with analogues of
spatial curvature, cosmological constant, dust and radiation terms. A number of
these models are then tractable at the quantum level. These models can be used
to study important issues 1) in canonical quantum gravity: the problem of time,
the semiclassical approach to it and timeless approaches to it (such as the
naive Schrodinger interpretation and records theory). 2) In quantum cosmology,
such as in the investigation of uniform states, robustness, and the qualitative
understanding of the origin of structure formation.Comment: References and some more motivation adde
Approaching the Problem of Time with a Combined Semiclassical-Records-Histories Scheme
I approach the Problem of Time and other foundations of Quantum Cosmology
using a combined histories, timeless and semiclassical approach. This approach
is along the lines pursued by Halliwell. It involves the timeless probabilities
for dynamical trajectories entering regions of configuration space, which are
computed within the semiclassical regime. Moreover, the objects that Halliwell
uses in this approach commute with the Hamiltonian constraint, H. This approach
has not hitherto been considered for models that also possess nontrivial linear
constraints, Lin. This paper carries this out for some concrete relational
particle models (RPM's). If there is also commutation with Lin - the Kuchar
observables condition - the constructed objects are Dirac observables.
Moreover, this paper shows that the problem of Kuchar observables is explicitly
resolved for 1- and 2-d RPM's. Then as a first route to Halliwell's approach
for nontrivial linear constraints that is also a construction of Dirac
observables, I consider theories for which Kuchar observables are formally
known, giving the relational triangle as an example. As a second route, I apply
an indirect method that generalizes both group-averaging and Barbour's best
matching. For conceptual clarity, my study involves the simpler case of
Halliwell 2003 sharp-edged window function. I leave the elsewise-improved
softened case of Halliwell 2009 for a subsequent Paper II. Finally, I provide
comments on Halliwell's approach and how well it fares as regards the various
facets of the Problem of Time and as an implementation of QM propositions.Comment: An improved version of the text, and with various further references.
25 pages, 4 figure
High current lightning test of space shuttle external tank lightning protection system
During lift-off, the shuttle launch vehicle (external tank, solid rocket booster and orbiter) may be subjected to a lightning strike. Tests of a proposed lightning protection method for the external tank and development materials which were subjected to simulated lightning strikes are described. Results show that certain of the high resistant paint strips performed remarkably well in diverting the 50 kA lightning strikes
Triangleland. I. Classical dynamics with exchange of relative angular momentum
In Euclidean relational particle mechanics, only relative times, relative
angles and relative separations are meaningful. Barbour--Bertotti (1982) theory
is of this form and can be viewed as a recovery of (a portion of) Newtonian
mechanics from relational premises. This is of interest in the absolute versus
relative motion debate and also shares a number of features with the
geometrodynamical formulation of general relativity, making it suitable for
some modelling of the problem of time in quantum gravity. I also study
similarity relational particle mechanics (`dynamics of pure shape'), in which
only relative times, relative angles and {\sl ratios of} relative separations
are meaningful. This I consider firstly as it is simpler, particularly in 1 and
2 d, for which the configuration space geometry turns out to be well-known,
e.g. S^2 for the `triangleland' (3-particle) case that I consider in detail.
Secondly, the similarity model occurs as a sub-model within the Euclidean
model: that admits a shape--scale split. For harmonic oscillator like
potentials, similarity triangleland model turns out to have the same
mathematics as a family of rigid rotor problems, while the Euclidean case turns
out to have parallels with the Kepler--Coulomb problem in spherical and
parabolic coordinates. Previous work on relational mechanics covered cases
where the constituent subsystems do not exchange relative angular momentum,
which is a simplifying (but in some ways undesirable) feature paralleling
centrality in ordinary mechanics. In this paper I lift this restriction. In
each case I reduce the relational problem to a standard one, thus obtain
various exact, asymptotic and numerical solutions, and then recast these into
the original mechanical variables for physical interpretation.Comment: Journal Reference added, minor updates to References and Figure
New interpretation of variational principles for gauge theories. I. Cyclic coordinate alternative to ADM split
I show how there is an ambiguity in how one treats auxiliary variables in
gauge theories including general relativity cast as 3 + 1 geometrodynamics.
Auxiliary variables may be treated pre-variationally as multiplier coordinates
or as the velocities corresponding to cyclic coordinates. The latter treatment
works through the physical meaninglessness of auxiliary variables' values
applying also to the end points (or end spatial hypersurfaces) of the
variation, so that these are free rather than fixed. [This is also known as
variation with natural boundary conditions.] Further principles of dynamics
workings such as Routhian reduction and the Dirac procedure are shown to have
parallel counterparts for this new formalism. One advantage of the new scheme
is that the corresponding actions are more manifestly relational. While the
electric potential is usually regarded as a multiplier coordinate and Arnowitt,
Deser and Misner have regarded the lapse and shift likewise, this paper's
scheme considers new {\it flux}, {\it instant} and {\it grid} variables whose
corresponding velocities are, respectively, the abovementioned previously used
variables. This paper's way of thinking about gauge theory furthermore admits
interesting generalizations, which shall be provided in a second paper.Comment: 11 page
ATS-5 trilateration support
The development of an L-band trilateration network capable of locating the ATS-5 satellite, determining the satellite's orbital elements, and predicting the satellite position was investigated. An automatic tone-code ranging transponder was used to compare ranging measurements and communications reliability for the VHF and L-band. The L-band transponder network, analytical techniques, and the determination of the Kepler orbit parameters are described along with the calibration procedures, operation procedures, and verification of trilateration position
The use of LANDSAT digital data and computer implemented techniques for an erosion hazard-reforestation needs assessment
There are no author-identified significant results in this report
Superfluid Suppression in d-Wave Superconductors due to Disordered Magnetism
The influence of static magnetic correlations on the temperature-dependent
superfluid density \rho_s(T) is calculated for d-wave superconductors. In
self-consistent calculations, itinerant holes form incommensurate spin density
waves (SDW) which coexist with superconductivity. In the clean limit, the
density of states is gapped, and \rho_s(T << T_c) is exponentially activated.
In inhomogeneously-doped cases, the SDW are disordered and both the density of
states and \rho_s(T) obtain forms indistinguishable from those in dirty but
pure d-wave superconductors, in accordance with experiments. We conclude that
the observed collapse of \rho_s at x\approx 0.35 in underdoped YBCO may
plausibly be attributed to the coexistence of SDW and superconductivity.Comment: 6 pages, 5 figures. Expanded discussio
- …