2 research outputs found

    Prey capture in the lizard Agama stellio

    Get PDF
    ABSTRACT Prey capture in Agama stellio was recorded by high-speed video in combination with the electrical activity of both jaw and hyolingual muscles. Quantification of kinematics and muscle activity patterns facilitated their correlation during kinematic phases. Changes in angular velocity of the gape let the strike be subdivided into four kinematic phases: slow open (SO1 and SOII), fast open (FO), fast close (FC), and slow close-power stroke (SC/PS). The SO1 phase is marked by initial activity in the tongue protractor, the hyoid protractor, and the ring muscle. These muscles project the tongue beyond the anterior margin of the jaw. During the SO11 phase, a low level of activity in the jaw closers correlates with a decline of the jaw-opening velocity. Next, bilateral activity in the jaw openers defines the start of the FO phase. This activity ends at maximal gape. Simultaneously, the hyoid retractor and the hyoglossus become active, causing tongue retraction during the FO phase. At maximal gape, the jaw closers contract simultaneously, initiating the FC phase. After a short pause, they contract again and the prey is crushed during the SC/PS phase. Our results support the hypothesis of tongue projection in agamids by Smith ([ 19881 J. Morphol. 196:157-171), and show some striking similarities with muscle activity patterns during the strike in chameleons (Wainwright and Bennett [ 1992al J. Exp. Biol. 168:l-21). Differences are in the activation pattern of the hyoglossus. The agamid tongue projection mechanism appears to be an ideal mechanical precursor for the ballistic tongue projection mechanism of chameleonids; the key derived feature in the chameleon tongue projection mechanism most likely lies in the changed motor pattern controlling the hyoglossus muscle. B 1995 Wiley-Liss, Inc

    Kinematics of feeding in the lizard Agama stellio

    No full text
    International audienceThe kinematics of prey capture, intraoral transport and swallowing in lizards of the species Agama stellio (Agamidae) were investigated using cineradiography (50 frames s-1) and high-speed video recordings (500 frames s-1). Small metal markers were inserted into different parts of the upper and lower jaw and the tongue. Video and cineradiographic images were digitized, and displacements of the body, head, upper and lower jaw and the tongue were quantified. Twenty additional variables depicting displacements and timing of events were calculated. A factor analysis performed on the kinematic data separates prey capture and swallowing cycles from intraoral transport bites. However, the intraoral transport stage cannot be separated into chewing (reduction) and transport bites. The effect of prey type and size on the feeding kinematics of intraoral transport and swallowing cycles was investigated. During the intraoral transport stage, distinct aspects (e.g. durations, maximal excursions) of the gape and tongue cycle are modulated in response to both the size and type of the prey item. The results for A. stellio generally agree with a previous model, although it is the entire slow opening phase rather than solely the duration of the second part of this phase that is affected by the size of the prey. The intraoral transport cycles in A. stellio show the two synapomorphic characteristics of tetrapods (tongue-based terrestrial intraoral prey transport and the existence of a long preparatory period of prey compression). However, not all five characters of the feeding cycle previously proposed for amniotes are present in A. stellio. One major difference is that in A. stellio the recovery of the hyolingual apparatus does not take place during the slow opening phase but during the slow closing/powerstroke phase
    corecore