5,028 research outputs found

    Spectroscopy of YO from first principles

    Get PDF
    We report an ab initio study on the spectroscopy of the open-shell diatomic molecule yttrium oxide, YO. The study considers the six lowest doublet states, X^{2}Σ^{+}, A^{'2}Δ, A^{2}Π, B^{2}Σ+, C^{2}Π, D^{2}Σ^{+}, and a few higher-lying quartet states using high levels of electronic structure theory and accurate nuclear motion calculations. The coupled cluster singles, doubles, and perturbative triples, CCSD(T), and multireference configuration interaction (MRCIa) methods are employed in conjunction with a relativistic pseudopotential on the yttrium atom and a series of correlation-consistent basis sets ranging in size from triple-ζ to quintuple-ζ quality. Core-valence correlation effects are taken into account and complete basis set limit extrapolation is performed for CCSD(T). Spin-orbit coupling is included through the use of both MRCI state-interaction with spin-orbit (SI-SO) approach and four-component relativistic equation-of-motion CCSD calculations. Using the ab initio data for bond lengths ranging from 1.0 to 2.5 Å, we compute 6 potential energy, 12 spin-orbit, 8 electronic angular momentum, 6 electric dipole moment and 12 transition dipole moment (4 parallel and 8 perpendicular) curves which provide a complete description of the spectroscopy of the system of six lowest doublet states. The Duo nuclear motion program is used to solve the coupled nuclear motion Schrödinger equation for these six electronic states. The spectra of {89}^Y^{16}O simulated for different temperatures are compared with several available high resolution experimental studies; good agreement is found once minor adjustments are made to the electronic excitation energies

    Methods for precise photoelectron counting with photomultipliers

    Get PDF
    Abstract A series of measurements has been performed on a THORN EMI 9351 phototube in order to investigate its response to a low light intensity. Precise procedures to determine the intensity of the incident photon flux have been developed and compared. The data show that the various approaches give consistent and reliable results, thus allowing the precise calibration of the device for applications of photon counting

    The Nylon Scintillator Containment Vessels for the Borexino Solar Neutrino Experiment

    Get PDF
    Borexino is a solar neutrino experiment designed to observe the 0.86 MeV Be-7 neutrinos emitted in the pp cycle of the sun. Neutrinos will be detected by their elastic scattering on electrons in 100 tons of liquid scintillator. The neutrino event rate in the scintillator is expected to be low (~0.35 events per day per ton), and the signals will be at energies below 1.5 MeV, where background from natural radioactivity is prominent. Scintillation light produced by the recoil electrons is observed by an array of 2240 photomultiplier tubes. Because of the intrinsic radioactive contaminants in these PMTs, the liquid scintillator is shielded from them by a thick barrier of buffer fluid. A spherical vessel made of thin nylon film contains the scintillator, separating it from the surrounding buffer. The buffer region itself is divided into two concentric shells by a second nylon vessel in order to prevent inward diffusion of radon atoms. The radioactive background requirements for Borexino are challenging to meet, especially for the scintillator and these nylon vessels. Besides meeting requirements for low radioactivity, the nylon vessels must also satisfy requirements for mechanical, optical, and chemical properties. The present paper describes the research and development, construction, and installation of the nylon vessels for the Borexino experiment

    Comment on Reparametrization Invariance of Quark-Lepton Complementarity

    Full text link
    We study the complementarity between quark and lepton mixing angles (QLC), the sum of an angle in quark mixing and the corresponding angle in lepton mixing is π/4\pi/4. Experimentally in the standard PDG parametrization, two such relations exist approximately. These QLC relations are accidental which only manifest themselves in the PDG parametrization. We propose reparametrization invariant expressions for the complementarity relations in terms of the magnitude of the elements in the quark and lepton mixing matrices. In the exact QLC limit, it is found that Vus/Vud+Ve2/Ve1+Vus/VudVe2/Ve1=1|V_{us}/V_{ud}| + |V_{e2}/V_{e1}| + |V_{us}/V_{ud}| |V_{e2}/V_{e1}| =1 and Vcb/Vtb+Vμ3/Vτ3+Vcb/VtbVμ3/Vτ3=1|V_{cb}/V_{tb}| + |V_{\mu 3}/V_{\tau 3}| +|V_{cb}/V_{tb}|| {V_{\mu 3}}/V_{\tau 3}| =1. Expressions with deviations from exact complementarity are obtained. Implications of these relations are also discussed.Comment: 5 pages and 1 figure. Implications for recent Daya-Bay neutrino data on theta_{13} discusse

    Enhanced absorption Hanle effect on the Fg=F->Fe=F+1 closed transitions

    Get PDF
    We analyse the Hanle effect on a closed FgFe=Fg+1F_g\to F_e=F_g+1 transition. Two configurations are examined, for linear- and circular-polarized laser radiation, with the applied magnetic field collinear to the laser light wavevector. We describe the peculiarities of the Hanle signal for linearly-polarized laser excitation, characterized by narrow bright resonances at low laser intensities. The mechanism behind this effect is identified, and numerical solutions for the optical Bloch equations are presented for different transitions.Comment: to be published in J. Opt. B, special issue on Quantum Coherence and Entanglement (February 2001

    Theta-13 as a Probe of Mu-Tau symmetry for Leptons

    Full text link
    Many experiments are being planned to measure the neutrino mixing parameter θ13\theta_{13} using reactor as well as accelerator neutrino beams. In this note, the theoretical significance of a high precision measurement of this parameter is discussed. It is emphasized that it will provide crucial information about different ways to understand the origin of large atmospheric neutrino mixing and move us closer towards determining the neutrino mass matrix. For instance if exact μτ\mu\leftrightarrow \tau symmetry in the neutrino mass matrix is assumed to be the reason for maximal νμντ\nu_\mu-\nu_\tau mixing, one gets θ13=0\theta_{13}=0. Whether θ13Δm2/ΔmA2\theta_{13}\simeq \sqrt{\Delta m^2_{\odot}/\Delta m^2_A} or θ13Δm2/ΔmA2\theta_{13}\simeq \Delta m^2_{\odot}/\Delta m^2_A can provide information about the way the μτ\mu\leftrightarrow \tau symmetry breaking manifests in the case of normal hierarchy. We also discuss the same question for inverted hierarchy as well as possible gauge theories with this symmetry.Comment: 12 pages; no figures; latex; more exact expressions given for some parameters and minor typos corrected; paper accepted for publication in JHE

    Challenges of beta-deformation

    Full text link
    A brief review of problems, arising in the study of the beta-deformation, also known as "refinement", which appears as a central difficult element in a number of related modern subjects: beta \neq 1 is responsible for deviation from free fermions in 2d conformal theories, from symmetric omega-backgrounds with epsilon_2 = - epsilon_1 in instanton sums in 4d SYM theories, from eigenvalue matrix models to beta-ensembles, from HOMFLY to super-polynomials in Chern-Simons theory, from quantum groups to elliptic and hyperbolic algebras etc. The main attention is paid to the context of AGT relation and its possible generalizations.Comment: 20 page

    Approaching gas phase electrodeposition: process and optimization to enable the self-aligned growth of 3D nanobridge-based interconnects

    Get PDF
    A nanowire bonding process referred to as gas‐phase electrodeposition is reported to form nanobridge‐based interconnects. The process is able to grow free‐standing point‐to‐point electrical connections using metallic wires. As a demonstration, programmable interconnects and an interdigitated electrode array are shown. The process is more material efficient when compared with conventional vapor deposition since the material is directed to the point of use

    Observation of a J^PC = 1-+ exotic resonance in diffractive dissociation of 190 GeV/c pi- into pi- pi- pi+

    Get PDF
    The COMPASS experiment at the CERN SPS has studied the diffractive dissociation of negative pions into the pi- pi- pi+ final state using a 190 GeV/c pion beam hitting a lead target. A partial wave analysis has been performed on a sample of 420000 events taken at values of the squared 4-momentum transfer t' between 0.1 and 1 GeV^2/c^2. The well-known resonances a1(1260), a2(1320), and pi2(1670) are clearly observed. In addition, the data show a significant natural parity exchange production of a resonance with spin-exotic quantum numbers J^PC = 1-+ at 1.66 GeV/c^2 decaying to rho pi. The resonant nature of this wave is evident from the mass-dependent phase differences to the J^PC = 2-+ and 1++ waves. From a mass-dependent fit a resonance mass of 1660 +- 10+0-64 MeV/c^2 and a width of 269+-21+42-64 MeV/c^2 is deduced.Comment: 7 page, 3 figures; version 2 gives some more details, data unchanged; version 3 updated authors, text shortened, data unchange
    corecore