5,028 research outputs found
Spectroscopy of YO from first principles
We report an ab initio study on the spectroscopy of the open-shell diatomic molecule yttrium oxide, YO. The study considers the six lowest doublet states, X^{2}Σ^{+}, A^{'2}Δ, A^{2}Π, B^{2}Σ+, C^{2}Π, D^{2}Σ^{+}, and a few higher-lying quartet states using high levels of electronic structure theory and accurate nuclear motion calculations. The coupled cluster singles, doubles, and perturbative triples, CCSD(T), and multireference configuration interaction (MRCIa) methods are employed in conjunction with a relativistic pseudopotential on the yttrium atom and a series of correlation-consistent basis sets ranging in size from triple-ζ to quintuple-ζ quality. Core-valence correlation effects are taken into account and complete basis set limit extrapolation is performed for CCSD(T). Spin-orbit coupling is included through the use of both MRCI state-interaction with spin-orbit (SI-SO) approach and four-component relativistic equation-of-motion CCSD calculations. Using the ab initio data for bond lengths ranging from 1.0 to 2.5 Å, we compute 6 potential energy, 12 spin-orbit, 8 electronic angular momentum, 6 electric dipole moment and 12 transition dipole moment (4 parallel and 8 perpendicular) curves which provide a complete description of the spectroscopy of the system of six lowest doublet states. The Duo nuclear motion program is used to solve the coupled nuclear motion Schrödinger equation for these six electronic states. The spectra of {89}^Y^{16}O simulated for different temperatures are compared with several available high resolution experimental studies; good agreement is found once minor adjustments are made to the electronic excitation energies
Methods for precise photoelectron counting with photomultipliers
Abstract A series of measurements has been performed on a THORN EMI 9351 phototube in order to investigate its response to a low light intensity. Precise procedures to determine the intensity of the incident photon flux have been developed and compared. The data show that the various approaches give consistent and reliable results, thus allowing the precise calibration of the device for applications of photon counting
The Nylon Scintillator Containment Vessels for the Borexino Solar Neutrino Experiment
Borexino is a solar neutrino experiment designed to observe the 0.86 MeV Be-7
neutrinos emitted in the pp cycle of the sun. Neutrinos will be detected by
their elastic scattering on electrons in 100 tons of liquid scintillator. The
neutrino event rate in the scintillator is expected to be low (~0.35 events per
day per ton), and the signals will be at energies below 1.5 MeV, where
background from natural radioactivity is prominent. Scintillation light
produced by the recoil electrons is observed by an array of 2240
photomultiplier tubes. Because of the intrinsic radioactive contaminants in
these PMTs, the liquid scintillator is shielded from them by a thick barrier of
buffer fluid. A spherical vessel made of thin nylon film contains the
scintillator, separating it from the surrounding buffer. The buffer region
itself is divided into two concentric shells by a second nylon vessel in order
to prevent inward diffusion of radon atoms. The radioactive background
requirements for Borexino are challenging to meet, especially for the
scintillator and these nylon vessels. Besides meeting requirements for low
radioactivity, the nylon vessels must also satisfy requirements for mechanical,
optical, and chemical properties. The present paper describes the research and
development, construction, and installation of the nylon vessels for the
Borexino experiment
Comment on Reparametrization Invariance of Quark-Lepton Complementarity
We study the complementarity between quark and lepton mixing angles (QLC),
the sum of an angle in quark mixing and the corresponding angle in lepton
mixing is . Experimentally in the standard PDG parametrization, two such
relations exist approximately. These QLC relations are accidental which only
manifest themselves in the PDG parametrization. We propose reparametrization
invariant expressions for the complementarity relations in terms of the
magnitude of the elements in the quark and lepton mixing matrices. In the exact
QLC limit, it is found that and . Expressions with deviations
from exact complementarity are obtained. Implications of these relations are
also discussed.Comment: 5 pages and 1 figure. Implications for recent Daya-Bay neutrino data
on theta_{13} discusse
Enhanced absorption Hanle effect on the Fg=F->Fe=F+1 closed transitions
We analyse the Hanle effect on a closed transition. Two
configurations are examined, for linear- and circular-polarized laser
radiation, with the applied magnetic field collinear to the laser light
wavevector. We describe the peculiarities of the Hanle signal for
linearly-polarized laser excitation, characterized by narrow bright resonances
at low laser intensities. The mechanism behind this effect is identified, and
numerical solutions for the optical Bloch equations are presented for different
transitions.Comment: to be published in J. Opt. B, special issue on Quantum Coherence and
Entanglement (February 2001
Theta-13 as a Probe of Mu-Tau symmetry for Leptons
Many experiments are being planned to measure the neutrino mixing parameter
using reactor as well as accelerator neutrino beams. In this
note, the theoretical significance of a high precision measurement of this
parameter is discussed. It is emphasized that it will provide crucial
information about different ways to understand the origin of large atmospheric
neutrino mixing and move us closer towards determining the neutrino mass
matrix. For instance if exact symmetry in the
neutrino mass matrix is assumed to be the reason for maximal
mixing, one gets . Whether or can provide information about the way the
symmetry breaking manifests in the case of normal hierarchy. We also discuss
the same question for inverted hierarchy as well as possible gauge theories
with this symmetry.Comment: 12 pages; no figures; latex; more exact expressions given for some
parameters and minor typos corrected; paper accepted for publication in JHE
Challenges of beta-deformation
A brief review of problems, arising in the study of the beta-deformation,
also known as "refinement", which appears as a central difficult element in a
number of related modern subjects: beta \neq 1 is responsible for deviation
from free fermions in 2d conformal theories, from symmetric omega-backgrounds
with epsilon_2 = - epsilon_1 in instanton sums in 4d SYM theories, from
eigenvalue matrix models to beta-ensembles, from HOMFLY to super-polynomials in
Chern-Simons theory, from quantum groups to elliptic and hyperbolic algebras
etc. The main attention is paid to the context of AGT relation and its possible
generalizations.Comment: 20 page
Approaching gas phase electrodeposition: process and optimization to enable the self-aligned growth of 3D nanobridge-based interconnects
A nanowire bonding process referred to as gas‐phase electrodeposition is reported to form nanobridge‐based interconnects. The process is able to grow free‐standing point‐to‐point electrical connections using metallic wires. As a demonstration, programmable interconnects and an interdigitated electrode array are shown. The process is more material efficient when compared with conventional vapor deposition since the material is directed to the point of use
Observation of a J^PC = 1-+ exotic resonance in diffractive dissociation of 190 GeV/c pi- into pi- pi- pi+
The COMPASS experiment at the CERN SPS has studied the diffractive
dissociation of negative pions into the pi- pi- pi+ final state using a 190
GeV/c pion beam hitting a lead target. A partial wave analysis has been
performed on a sample of 420000 events taken at values of the squared
4-momentum transfer t' between 0.1 and 1 GeV^2/c^2. The well-known resonances
a1(1260), a2(1320), and pi2(1670) are clearly observed. In addition, the data
show a significant natural parity exchange production of a resonance with
spin-exotic quantum numbers J^PC = 1-+ at 1.66 GeV/c^2 decaying to rho pi. The
resonant nature of this wave is evident from the mass-dependent phase
differences to the J^PC = 2-+ and 1++ waves. From a mass-dependent fit a
resonance mass of 1660 +- 10+0-64 MeV/c^2 and a width of 269+-21+42-64 MeV/c^2
is deduced.Comment: 7 page, 3 figures; version 2 gives some more details, data unchanged;
version 3 updated authors, text shortened, data unchange
- …