106 research outputs found

    Biomarker Changes Associated with Tuberculin Skin Test (TST) Conversion: A Two-Year Longitudinal Follow-Up Study in Exposed Household Contacts

    Get PDF
    Background:A high prevalence (50-80%) of Tuberculin Skin Test Positivity (TST+ \u3eor=10 mm indurations) has been reported in TB endemic countries. This pool forms a huge reservoir for new incident TB cases. However, immune biomarkers associated with TST conversion are largely unknown. The objective of this study was to identify immune biomarkers associated with TST conversion after acute Mycobacterium tuberculosis (MTB) Methodology/Principal Findings:A 24 month longitudinal study was carried out in a recently MTB exposed cohort of household contacts (HC = 93, 75% TST+). Control group consisted of unexposed community controls (EC = 59, 46%TST+). Cytokine secretion was assessed in whole blood cultures in response to either mycobacterial culture filtrate (CF) antigens or mitogens (PHA or LPS) using Elisa methodology. Compared to the EC group, the HC group at recruitment (Kruskal-Wallis Test) showed significantly suppressed IFN gamma (p = 0.0001), raised IL-10 (p = 0.0005) and raised TNF alpha (p = 0.001) in response to CF irrespective of their TST status. Seventeen TST-HC, showed TST conversion when retested at 6 months. Post TST conversion (paired t tests) significant increases were observed for CF induced IFN gamma (p = 0.038), IL-10 (p = 0.001) and IL-6 (p = 0.006). Cytokine responses were also compared in the exposed HC group with either recent infection [(TST converters (N = 17)] or previous infection [TST+ HC (N = 54)] at 0, 6, 12 and 24 months using ANOVA on repeated measures. Significant differences between the exposed HC groups were noted only at 6 months. CF induced IFN gamma was higher in previously infected HC group (p = 0.038) while IL-10 was higher in recently infected HC group (p = 0.041). Mitogen induced cytokine secretion showed similar differences for different group.Conclusions/Significance:Our results suggest that TST conversion is associated with early increases in IFN gamma and IL-10 responses and precedes latency by several months post exposure

    An update of the Worldwide Integrated Assessment (WIA) on systemic insecticides. Part 2: impacts on organisms and ecosystems

    Get PDF
    New information on the lethal and sublethal effects of neonicotinoids and fipronil on organisms is presented in this review, complementing the previous WIA in 2015. The high toxicity of these systemic insecticides to invertebrates has been confirmed and expanded to include more species and compounds. Most of the recent research has focused on bees and the sublethal and ecological impacts these insecticides have on pollinators. Toxic effects on other invertebrate taxa also covered predatory and parasitoid natural enemies and aquatic arthropods. Little, while not much new information has been gathered on soil organisms. The impact on marine coastal ecosystems is still largely uncharted. The chronic lethality of neonicotinoids to insects and crustaceans, and the strengthened evidence that these chemicals also impair the immune system and reproduction, highlights the dangers of this particular insecticidal classneonicotinoids and fipronil. , withContinued large scale – mostly prophylactic – use of these persistent organochlorine pesticides has the potential to greatly decreasecompletely eliminate populations of arthropods in both terrestrial and aquatic environments. Sublethal effects on fish, reptiles, frogs, birds and mammals are also reported, showing a better understanding of the mechanisms of toxicity of these insecticides in vertebrates, and their deleterious impacts on growth, reproduction and neurobehaviour of most of the species tested. This review concludes with a summary of impacts on the ecosystem services and functioning, particularly on pollination, soil biota and aquatic invertebrate communities, thus reinforcing the previous WIA conclusions (van der Sluijs et al. 2015)

    Tannic Acid Modified Silver Nanoparticles Show Antiviral Activity in Herpes Simplex Virus Type 2 Infection

    Get PDF
    The interaction between silver nanoparticles and herpesviruses is attracting great interest due to their antiviral activity and possibility to use as microbicides for oral and anogenital herpes. In this work, we demonstrate that tannic acid modified silver nanoparticles sized 13 nm, 33 nm and 46 nm are capable of reducing HSV-2 infectivity both in vitro and in vivo. The antiviral activity of tannic acid modified silver nanoparticles was size-related, required direct interaction and blocked virus attachment, penetration and further spread. All tested tannic acid modified silver nanoparticles reduced both infection and inflammatory reaction in the mouse model of HSV-2 infection when used at infection or for a post-infection treatment. Smaller-sized nanoparticles induced production of cytokines and chemokines important for anti-viral response. The corresponding control buffers with tannic acid showed inferior antiviral effects in vitro and were ineffective in blocking in vivo infection. Our results show that tannic acid modified silver nanoparticles are good candidates for microbicides used in treatment of herpesvirus infections.This work was supported by the Polish National Science Centre grant No. 2011/03/B/NZ6/04878 (for MK) and Centre for Preclinical Research and Technology (CePT) Project No. POIG.02.02.00-14-024/08-0 (for MG and MD). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscrip
    • 

    corecore