51 research outputs found

    Регулируемый электропривод для транспортировки руды на предприятии «Медная обогатительная фабрика»

    Get PDF
    Целью работы является проектирование электрического привод крутонаклонного конвейера с регулированием скорости двигателя при помощи системы АВК для транспортировки руды на предприятии "Медная обогатительная фабрика". С помощью имитационной модели в MATLAB, исследование асинхронного двигателя было выполнено, и переходные характеристики были получены.The aim of the work is to design the electric drive of a steeply inclined conveyor with the regulation of the engine speed with the help of the AVK system for ore transportation at the enterprise "Copper Processing Plant". Using the simulation model in MATLAB, the study of the asynchronous motor was performed, and the transient characteristics were obtained

    Breast cancer genome-wide association studies: there is strength in numbers

    Get PDF
    Breast cancer (BC) is a heterogeneous disease that exhibits familial aggregation. Family linkage studies have identified high-penetrance genes, BRCA1, BRCA2, PTEN and TP53, that are responsible for inherited BC syndromes. Moreover, a combination of family-based and population-based approaches indicated that genes involved in DNA repair, such as CHEK2, ATM, BRIP and PALB2, are associated with moderate risk. Therefore, all of these known genes account for only 25% of the familial aggregation cases. Recently, genome wide association studies (GWAS) in BC revealed single nucleotide polymorphisms (SNPs) in five novel genes associated to susceptibility: TNRC9, FGFR2, MAP3K1, H19 and lymphocyte-specific protein 1 (LSP1). The most strongly associated SNP was in intron 2 of the FGFR2 gene that is amplified and overexpressed in 5-10% of BC. rs3803662 of TNRC9 gene has been shown to be the SNP with the strongest association with BC, in particular, this polymorphism seems to be correlated with bone metastases and estrogen receptor positivity. Relevant data indicate that SNP rs889312 in MAP3K1 is correlated with BC susceptibility only in BRCA2 mutation carriers, but is not associated with an increased risk in BRCA1 carriers. Finally, different SNPs in LSP1 and H19 and in minor genes probably were associated with BC risk. New susceptibility allelic variants associated with BC risk were recently discovered including potential causative genes involved in regulation of cell cycle, apoptosis, metabolism and mitochondrial functions. In conclusion, the identification of disease susceptibility loci may lead to a better understanding of the biological mechanism for BC to improve prevention, early detection and treatment

    Exosomal shuttling of miR-126 in endothelial cells modulates adhesive and migratory abilities of chronic myelogenous leukemia cells

    Get PDF
    BACKGROUND: Recent findings indicate that exosomes released from cancer cells contain microRNAs (miRNAs) that may be delivered to cells of tumor microenvironment. RESULTS: To elucidate whether miRNAs secreted from chronic myelogenous leukemia cells (CML) are shuttled into endothelial cells thus affecting their phenotype, we first analysed miRNAs content in LAMA84 exosomes. Among the 124 miRNAs identified in LAMA84 exosomes, we focused our attention on miR-126 which was found to be over-overexpressed in exosomes compared with producing parental cells. Transfection of LAMA84 with Cy3-labelled miR-126 and co-culture of leukemia cells with endothelial cells (EC) confirmed that miR-126 is shuttled into HUVECs. The treatment of HUVECs with LAMA84 exosomes for 24 hours reduced CXCL12 and VCAM1 expression, both at the mRNA and protein level, and negatively modulated LAMA84 motility and cells adhesion. Transfection in HUVECs of miR-126 inhibitor reversed the decrease of CXCL12 and restored the motility and adhesion of LAMA84 cells while the over-expression of miR-126, showed opposite effects. CONCLUSION: Our results show that the miR-126 shuttled by exosomes is biologically active in the target cells, and support the hypothesis that exosomal miRNAs have an important role in tumor-endothelial crosstalk occurring in the bone marrow microenvironment, potentially affecting disease progression

    Circulating miR-22, miR-24 and miR-34a as Novel Predictive Biomarkers to Pemetrexed-Based Chemotherapy in Advanced Non-Small Cell Lung Cancer

    Get PDF
    Pemetrexed has been widely used in patients with advanced non-small cell lung cancer (NSCLC). The clinical relevance of polymorphisms of folate pathway genes for pemetrexed metabolism have not been fully elucidated yet. The aim of this study was to evaluate the expression levels of circulating miR-22, miR-24, and miR-34a, possibly involved in folate pathway, in NSCLC patients treated with pemetrexed compared with healthy controls and to investigate their impact on patient clinical outcomes. A total of 22 consecutive patients with advanced NSCLC, treated with pemetrexed-based chemotherapy and 27 age and sex matched healthy controls were included in this preliminary analysis. miR-22, miR-24, and miR-34a targets were identified by TargetScan 6.2 algorithm, validating the involvement of these microRNAs in folate pathway. MicroRNAs were isolated from whole blood and extracted with miRNAeasy Mini Kit (Qiagen). miRNA profiling was performed using Real-Time PCR. SPSS 17 was used to data analysis. miR-22, miR-24, and miR-34a were found upregulated (P<0.05) in NSCLC patients versus healthy controls. Higher expression levels were recorded for miR-34a. Nevertheless, significantly higher miR-22 expression was observed in patients developing progressive disease (P=0.03). No significant associations with clinical outcome were recorded for miR-24 and miR-34a. Albeit preliminary, these data support the involvement of miR-22, miR-24, and miR-34a in advanced NSCLC. The correlation between high expression of miR-22 in whole blood and the lack of response in pemetrexed treated NSCLC patients indicates that miR-22 could represent a novel predictive biomarker for pemetrexed-based treatment

    Interannual changes in winter-spring zooplankton estuarine community forced by hydroclimatic variability - With special reference to bioindicator species Eurytemora americana

    Get PDF
    Climatic variability and anthropogenic pressures impact the structure and dynamics of pelagic ecosystems and copepods are good indicators of such changes. This investigation aims to explore the interannual pattern of the mesozooplankton community, in relation to environmental variables in the Bahía Blanca Estuary during winter-spring from last two decades focusing on the dominant species Eurytemora americana. Main changes recorded include increased temperature, alteration of the nutrient balance, a decrease in chlorophyll-a, modifications in the abundance-structure of the phytoplankton assemblages, and changes in the abundance-structure of the mesozooplankton community. A significant decrease was observed in species richness of the mesozooplankton over time. Alterations in abundance and reproductive traits of E. americana, were also found. The population of E. americana dropped from mean relative abundance of 47% in first years to 20-12% in lasts one, accompanied with an increase of copepod species characterized by higher trophic plasticity in eutrophic conditions, like Acartia tonsa and Euterpina acutifrons.Fil: Berasategui, Anabela Anhi. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto Argentino de Oceanografía. Universidad Nacional del Sur. Instituto Argentino de Oceanografía; ArgentinaFil: Calliari, D .L.. Universidad de la República; UruguayFil: Amodeo, Martín Raúl. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto Argentino de Oceanografía. Universidad Nacional del Sur. Instituto Argentino de Oceanografía; ArgentinaFil: Spetter, Carla Vanesa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto Argentino de Oceanografía. Universidad Nacional del Sur. Instituto Argentino de Oceanografía; ArgentinaFil: Guinder, Valeria Ana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto Argentino de Oceanografía. Universidad Nacional del Sur. Instituto Argentino de Oceanografía; ArgentinaFil: Biancalana, Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto Argentino de Oceanografía. Universidad Nacional del Sur. Instituto Argentino de Oceanografía; Argentin

    Analysis of molecular mechanisms and anti-tumoural effects of zoledronic acid in breast cancer cells

    Get PDF
    Zoledronic acid (ZOL) is the most potent nitrogen-containing bisphosphonate (N-BPs) that strongly binds to bone mineral and acts as a powerful inhibitor of bone resorption, already clinically available for the treatment of patients with osteolytic metastases. Recent data also suggest that ZOL, used in breast cancer, may provide more than just supportive care modifying the course of the disease, though the possible molecular mechanism of action is still unclear. As breast cancer is one of the primary tumours with high propensity to metastasize to the bone, we investigated, for the first time, differential gene expression profile on Michigan Cancer Foundation-7 (MCF-7) breast cancer cells treated with low doses of ZOL (10 lM). Microarrays analysis was used to identify, describe and summarize evidence regarding the molecular basis of actions of ZOL and of their possible direct anti-tumour effects. We validated gene expression results of specific transcripts involved in major cellular process by Real Time and Western Blot analysis and we observed inhibition of proliferation and migration through 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide (MTT) and Matrigel assay. We then focused on changes in the cytoskeletal components as fibronectin 1 (FN1), actin, and anti angiogenic compounds as transforming growth factor-b1 (TGF-b1) and thrombospondin 1 (THBS1). The up-regulation of these products may have an important role in inhibiting proliferation, invasion and angiogenesis mediated by ZOL

    Genetic and molecular characterization of the human osteosarcoma 3AB-OS cancer stem cell line: a possible model for studying osteosarcoma origin and stemness.

    Get PDF
    Finding new treatments targeting cancer stem cells (CSCs) within a tumor seems to be critical to halt cancer and improve patient survival. Osteosarcoma is an aggressive tumor affecting adolescents, for which there is no second-line chemotherapy. Uncovering new molecular mechanisms underlying the development of osteosarcoma and origin of CSCs is crucial to identify new possible therapeutic strategies. Here, we aimed to characterize genetically and molecularly the human osteosarcoma 3AB-OS CSC line, previously selected from MG63 cells and which proved to have both in vitro and in vivo features of CSCs. Classic cytogenetic studies demonstrated that 3AB-OS cells have hypertriploid karyotype with 71–82 chromosomes. By comparing 3AB-OS CSCs to the parental cells, array CGH, Affymetrix microarray, and TaqMan1 Human MicroRNA array analyses identified 49 copy number variations (CNV), 3,512 dysregulated genes and 189 differentially expressed miRNAs. Some of the chromosomal abnormalities and mRNA/miRNA expression profiles appeared to be congruent with those reported in human osteosarcomas. Bioinformatic analyses selected 196 genes and 46 anticorrelated miRNAs involved in carcinogenesis and stemness. For the first time, a predictive network is also described for two miRNA family (let-7/98 and miR-29a,b,c) and their anticorrelated mRNAs (MSTN, CCND2, Lin28B, MEST, HMGA2, and GHR), which may represent new biomarkers for osteosarcoma and may pave the way for the identification of new potential therapeutic targets

    Effects of PPARγ agonists on the expression of leptin and vascular endothelial growth factor in breast cancer cells.

    Get PDF
    The obesity hormone leptin has been implicated in breast cancer development. Breast cancer cells express the leptin receptor and are able to synthesize leptin in response to obesity-related stimuli. Furthermore, leptin is a positive regulator of vascular endothelial growth factor (VEGF) and high levels of both proteins are associated with worse prognosis in breast cancer patients. Peroxisome proliferator-activated receptor (PPAR) ligands are therapeutic agents used in patient with Type 2 diabetes and obesity which have recently been studied for their potential anti-tumor effect. Here, we studied if these compounds, ciglitazone and GW1929, can affect the expression of leptin and VEGF in breast cancer cells. In MDA-MB-231 and MCF-7 breast cancer cells, treatment with submolar concentrations of ciglitazone and GW1929 elevated the expression of leptin and VEGF mRNA and protein, and increased cell viability and migration. These effects coincided with increased recruitment of PPAR to the proximal leptin promoter and decreased association of a transcriptional factor Sp1 with this DNA region

    Diet suppresses tumour initiation by maintaining quiescence of mutation-bearing neural stem cells

    Get PDF
    Glioblastoma is thought to originate from neural stem cells (NSCs) of the subventricular zone that acquire genetic alterations. In the adult brain, NSCs are largely quiescent, suggesting that deregulation of quiescence maintenance may be a pre-requisite for tumour initiation. Although inactivation of the tumour suppressor p53 is a frequent event in gliomagenesis, whether, or how, it affects quiescent NSCs (qNSCs) remains unclear. Here we show that p53 maintains quiescence by inducing fatty acid oxidation (FAO) and that acute p53 deletion in qNSCs results in their premature activation to a proliferative state. Mechanistically, this occurs through direct transcriptional induction of PPARGC1a, which in turn activates PPARα to upregulate FAO genes. Strikingly, dietary supplementation with fish oil containing omega-3 fatty acids, natural PPARα ligands, fully restores quiescence of p53-deficient NSCs and delays tumour initiation in a glioblastoma mouse model. Thus, diet can silence glioblastoma driver mutations, with important implications for cancer prevention

    Diet suppresses glioblastoma initiation in mice by maintaining quiescence of mutation-bearing neural stem cells

    Get PDF
    Glioblastoma is thought to originate from neural stem cells (NSCs) of the subventricular zone that acquire genetic alterations. In the adult brain, NSCs are largely quiescent, suggesting that deregulation of quiescence maintenance may be a prerequisite for tumor initiation. Although inactivation of the tumor suppressor p53 is a frequent event in gliomagenesis, whether or how it affects quiescent NSCs (qNSCs) remains unclear. Here, we show that p53 maintains quiescence by inducing fatty-acid oxidation (FAO) and that acute p53 deletion in qNSCs results in their premature activation to a proliferative state. Mechanistically, this occurs through direct transcriptional induction of PPARGC1a, which in turn activates PPARα to upregulate FAO genes. Dietary supplementation with fish oil containing omega-3 fatty acids, natural PPARα ligands, fully restores quiescence of p53-deficient NSCs and delays tumor initiation in a glioblastoma mouse model. Thus, diet can silence glioblastoma driver mutations, with important implications for cancer prevention
    corecore