217 research outputs found

    Positron emission tomography

    Get PDF

    Positron emission tomography

    Get PDF

    Positron emission tomography

    Get PDF

    Positron emission tomography

    Get PDF

    Compact cyclotrons for the production of tracers and radiopharmaceuticals

    Get PDF
    Positron Emission Tomography (PET) is a method for determining biochemical and physiological processes in vivo in a quantitative manner. The most commonly used radionuclides are C-11, N-13, O-15 and F-18, with respective half-lives of approximately 20 min, 10 min, 2 min, and 110 min. F-18 labeled FDG (fluoro-2-deoxy-D-glucose) is now the most frequently used radiopharmaceutical and finds its application prominently in the field of oncology. Originally, the production of these radionuclides was performed with the existing accelerators, designed for nuclear physics, but with increasing interest in the PET methodology specially designed PET-production cyclotrons became available. The nuclear reactions involved are (p,n), (d,n), (p,alpha) and (d,alpha) and the thresholds for the nuclear reactions involved are 5 to 6 MeV. Based on these values and on other parameters, a proton 15 to 20 MeV cyclotron is often chosen. Since the half-life of a radionuclide limits the production time, the maximum beam current is an important parameter, together with the target construction, for the ultimate yield obtainable. In the development of special PET production cyclotrons, attention has also been paid to improve the extraction efficiency and the possibility of multiple extractions by designing negative ion cyclotrons. Commercial cyclotrons can often be acquired as an easy to operate integrated radionuclide production unit including targetry and some units. Regional FDG factories are nowadays being created to fulfil the demand for PET radiopharmaceutics. The possible choices in commercially available cyclotrons for the production of PET radionuclides will be discussed

    A rotating double-headed positron camera

    Get PDF
    Based on a double-headed rotating uncollimated scintillation camera system, a positron imaging device was developed. After a rotating data acquisition in coincidence mode, 16 transverse section images are reconstructed by back projection. To obtain a uniform response, a limited angle reconstruction option is incorporated in this process. After correction for the system response by a three-dimensional deconvolution technique, the 16 transverse section images are stored on disk as a standard patient study for further analysis. The system can also be operated in a stationary mode. In this mode longitudinal tomographic images are obtained. Return to single photon scintigraphy is possible by remounting the collimators and by switching off the coincidence electronics

    Imaging beta-adrenoceptors in the human brain with (S)-1'-[F-18]fluorocarazolol

    Get PDF
    We evaluated the suitability of fluorocarazolol for in vivo studies of cerebral beta-adrenoceptors because (S)-1'-[F-18]fluorocarazolol has a higher affinity to beta-adrenoceptors than to serotonergic receptors (pK(i) beta(1) 9.4, beta(2) 10.0, 5HT(1A) 7.4, 5HT(1B) 8.1) and rapidly crosses the blood-brain barrier. Methods: The (S)-[F-18]fluorocarazolol (74 MBq, >37 TBq/mmol) was intravenously administered to healthy volunteers on two separate occasions with an interval of at least 1 wk, The initial injection was without pretreatment, but before the second injection, the volunteers received the beta blocker (+/-)-pindolol (3 x 5 mg orally, during 18 hr). The brain was studied with a PET camera in dynamic mode. Results: Uptake of radioactivity delineated gray matter and was particularly high in the posterior cingulate, precuneus and striatum, Low uptake occurred in the thalamus, whereas the lowest uptake was observed in the white matter of the corpus callosum. After pindolol pretreatment, uptake was reduced and its distribution became homogeneous throughout the brain, The ratio of total-to-nonspecific binding was about 2 at 60 min, increasing to 2.5-2.75 at longer intervals. Conclusion: Fluorocarazolol is the first radioligand that can visualize cerebral beta-adrenoceptors and may enable monitoring of these binding sites during disease

    Imaging beta-adrenoceptors in the human brain with (S)-1'-[F-18]fluorocarazolol

    Get PDF
    We evaluated the suitability of fluorocarazolol for in vivo studies of cerebral beta-adrenoceptors because (S)-1'-[F-18]fluorocarazolol has a higher affinity to beta-adrenoceptors than to serotonergic receptors (pK(i) beta(1) 9.4, beta(2) 10.0, 5HT(1A) 7.4, 5HT(1B) 8.1) and rapidly crosses the blood-brain barrier. Methods: The (S)-[F-18]fluorocarazolol (74 MBq, >37 TBq/mmol) was intravenously administered to healthy volunteers on two separate occasions with an interval of at least 1 wk, The initial injection was without pretreatment, but before the second injection, the volunteers received the beta blocker (+/-)-pindolol (3 x 5 mg orally, during 18 hr). The brain was studied with a PET camera in dynamic mode. Results: Uptake of radioactivity delineated gray matter and was particularly high in the posterior cingulate, precuneus and striatum, Low uptake occurred in the thalamus, whereas the lowest uptake was observed in the white matter of the corpus callosum. After pindolol pretreatment, uptake was reduced and its distribution became homogeneous throughout the brain, The ratio of total-to-nonspecific binding was about 2 at 60 min, increasing to 2.5-2.75 at longer intervals. Conclusion: Fluorocarazolol is the first radioligand that can visualize cerebral beta-adrenoceptors and may enable monitoring of these binding sites during disease
    • …
    corecore