20 research outputs found

    A general modeling and visualization tool for comparing different members of a group: application to studying tau-mediated regulation of microtubule dynamics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Innumerable biological investigations require comparing collections of molecules, cells or organisms to one another with respect to one or more of their properties. Almost all of these comparisons are performed manually, which can be susceptible to inadvertent bias as well as miss subtle effects. The development and application of computer-assisted analytical and interpretive tools could help address these issues and thereby dramatically improve these investigations.</p> <p>Results</p> <p>We have developed novel computer-assisted analytical and interpretive tools and applied them to recent studies examining the ability of 3-repeat and 4-repeat tau to regulate the dynamic behavior of microtubules in vitro. More specifically, we have developed an automated and objective method to define growth, shortening and attenuation events from real time videos of dynamic microtubules, and demonstrated its validity by comparing it to manually assessed data. Additionally, we have used the same data to develop a general strategy of building different models of interest, computing appropriate dissimilarity functions to compare them, and embedding them on a two-dimensional plot for visualization and easy comparison. Application of these methods to assess microtubule growth rates and growth rate distributions established the validity of the embedding procedure and revealed non-linearity in the relationship between the tau:tubulin molar ratio and growth rate distribution.</p> <p>Conclusion</p> <p>This work addresses the need of the biological community for rigorously quantitative and generally applicable computational tools for comparative studies. The two-dimensional embedding method retains the inherent structure of the data, and yet markedly simplifies comparison between models and parameters of different samples. Most notably, even in cases where numerous parameters exist by which to compare the different samples, our embedding procedure provides a generally applicable computational strategy to detect subtle relationships between different molecules or conditions that might otherwise escape manual analyses.</p

    Interaction of microtubules and actin during the post-fusion phase of exocytosis

    Get PDF
    Exocytosis is the intracellular trafficking step where a secretory vesicle fuses with the plasma membrane to release vesicle content. Actin and microtubules both play a role in exocytosis; however, their interplay is not understood. Here we study the interaction of actin and microtubules during exocytosis in lung alveolar type II (ATII) cells that secrete surfactant from large secretory vesicles. Surfactant extrusion is facilitated by an actin coat that forms on the vesicle shortly after fusion pore opening. Actin coat compression allows hydrophobic surfactant to be released from the vesicle. We show that microtubules are localized close to actin coats and stay close to the coats during their compression. Inhibition of microtubule polymerization by colchicine and nocodazole affected the kinetics of actin coat formation and the extent of actin polymerisation on fused vesicles. In addition, microtubule and actin cross-linking protein IQGAP1 localized to fused secretory vesicles and IQGAP1 silencing influenced actin polymerisation after vesicle fusion. This study demonstrates that microtubules can influence actin coat formation and actin polymerization on secretory vesicles during exocytosis

    Nanomolar concentrations of nocodazole alter microtubule dynamic instability in vivo and in vitro

    No full text
    Previous studies demonstrated that nanomolar concentrations of nocodazole can block cells in mitosis without net microtubule disassembly and resulted in the hypothesis that this block was due to a nocodazole-induced stabilization of microtubules. We tested this hypothesis by examining the effects of nanomolar concentrations of nocodazole on microtubule dynamic instability in interphase cells and in vitro with purified brain tubulin. Newt lung epithelial cell microtubules were visualized by video-enhanced differential interference contrast microscopy and cells were perfused with solutions of nocodazole ranging in concentration from 4 to 400 nM. Microtubules showed a loss of the two-state behavior typical of dynamic instability as evidenced by the addition of a third state where they exhibited little net change in length (a paused state). Nocodazole perfusion also resulted in slower elongation and shortening velocities, increased catastrophe, and an overall decrease in microtubule turnover. Experiments performed on BSC-1 cells that were microinjected with rhodamine-labeled tubulin, incubated in nocodazole for 1 h, and visualized by using low-light-level fluorescence microscopy showed similar results except that nocodazole-treated BSC-1 cells showed a decrease in catastrophe. To gain insight into possible mechanisms responsible for changes in dynamic instability, we examined the effects of 4 nM to 12 microM nocodazole on the assembly of purified tubulin from axoneme seeds. At both microtubule plus and minus ends, perfusion with nocodazole resulted in a dose-dependent decrease in elongation and shortening velocities, increase in pause duration and catastrophe frequency, and decrease in rescue frequency. These effects, which result in an overall decrease in microtubule turnover after nocodazole treatment, suggest that the mitotic block observed is due to a reduction in microtubule dynamic turnover. In addition, the in vitro results are similar to the effects of increasing concentrations of GDP-tubulin (TuD) subunits on microtubule assembly. Given that nocodazole increases tubulin GTPase activity, we propose that nocodazole acts by generating TuD subunits that then alter dynamic instability
    corecore