55 research outputs found

    Radiation and Thyroid Cancer

    Get PDF
    Radiation-induced damage is a complex network of interlinked signaling pathways, which may result in apoptosis, cell cycle arrest, DNA repair, and cancer. The development of thyroid cancer in response to radiation, from nuclear catastrophes to chemotherapy, has long been an object of study. A basic overview of the ionizing and non-ionizing radiation effects of the sensitivity of the thyroid gland on radiation and cancer development has been provided. In this review, we focus our attention on experiments in cell cultures exposed to ionizing radiation, ultraviolet light, and proton beams. Studies on the involvement of specific genes, proteins, and lipids are also reported. This review also describes how lipids are regulated in response to the radiation-induced damage and how they are involved in thyroid cancer etiology, invasion, and migration and how they can be used as both diagnostic markers and drug targets

    Localization of nuclear actin in nuclear lipid microdomains of liver and hepatoma cells: Possible involvement of sphingomyelin metabolism

    Get PDF
    Nuclear actin has been implicated in different nuclear functions. In this work, its localization in nuclear membrane, chromatin and nuclear lipid microdomains was investigated. The implication of sphingomyelin metabolism was studied. Nuclear membrane, chromatin and nuclear lipid microdomains were purified from hepatocyte nuclei and H35 human hepatoma cell nuclei. The presence of \u3b2-actin was analyzed with immunoblotting by using specific antibodies. Sphingomyelinase, sphingomyelin-synthase, and phosphatidylcholine-specific phospholipase C activities were assayed by using radioactivity sphingomyelin and phosphatidylcholine as substrate. The results showed that \u3b2-actin is localized in nuclear lipid microdomains and it increases in cancer cells. Evidence is provided to the difference of phosphatidylcholine and sphingomyelin metabolism in various subnuclear fractions of cancer cell nuclei compared with normal cells. Our findings show increase of sphingomyelin-synthase and inhibition of sphingomyelinase activity only in nuclear lipid microdomains. Nuclear lipid microdomains, constituted by phosphatidylcholine, sphingomyelin and cholesterol, play a role as platform for \u3b2-actin anchoring. Possible role of sphingomyelin metabolism in cancer cells is discussed

    Mouse thyroid gland changes in aging: Implication of galectin-3 and sphingomyelinase

    Get PDF
    Prevalence of thyroid dysfunction and its impact on cognition in older people has been demonstrated, but many points remain unclarified. In order to study the effect of aging on the thyroid gland, we compared the thyroid gland of very old mice with that of younger ones. We have first investigated the changes of thyroid microstructure and the possibility that molecules involved in thyroid function might be associated with structural changes. Results from this study indicate changes in the height of the thyrocytes and in the amplitude of interfollicular spaces, anomalous expression/localization of thyrotropin, thyrotropin receptor, and thyroglobulin aging. Thyrotropin and thyrotropin receptor are upregulated and are distributed inside the colloid while thyroglobulin fills the interfollicular spaces. In an approach aimed at defining the behavior of molecules that change in different physiopathological conditions of thyroid, such as galectin-3 and sphingomyelinase, we then wondered what was their behavior in the thyroid gland in aging. Importantly, in comparison with the thyroid of young animals, we have found a higher expression of galectin-3 and a delocalization of neutral sphingomyelinase in the thyroid of old animals. A possible relationship between galectin-3, neutral sphingomyelinase, and aging has been discussed

    Nuclear lipid microdomains regulate daunorubicin resistance in hepatoma cells

    Get PDF
    Daunorubicin is an anticancer drug, and cholesterol is involved in cancer progression, but their relationship has not been defined. In this study, we developed a novel experimental model that utilizes daunorubicin, cholesterol, and daunorubicin plus cholesterol in the same cells (H35) to search for the role of nuclear lipid microdomains, rich in cholesterol and sphingomyelin, in drug resistance. We find that the daunorubicin induces perturbation of nuclear lipid microdomains, localized in the inner nuclear membrane, where active chromatin is anchored. As changes of sphingomyelin species in nuclear lipid microdomains depend on neutral sphingomyelinase activity, we extended our studies to investigate whether the enzyme is modulated by daunorubicin. Indeed the drug stimulated the sphingomyelinase activity that induced reduction of saturated long chain fatty acid sphingomyelin species in nuclear lipid microdomains. Incubation of untreated-drug cells with high levels of cholesterol resulted in the inhibition of sphingomyelinase activity with increased saturated fatty acid sphingomyelin species. In daunodubicin-treated cells, incubation with cholesterol reversed the action of the drug by acting via neutral sphingomyelinase. In conclusion, we suggest that cholesterol and sphingomyelin-forming nuclear lipid microdomains are involved in the drug resistance

    The Impact of Long-Term Exposure to Space Environment on Adult Mammalian Organisms: A Study on Mouse Thyroid and Testis

    Get PDF
    Hormonal changes in humans during spaceflight have been demonstrated but the underlying mechanisms are still unknown. To clarify this point thyroid and testis/epididymis, both regulated by anterior pituitary gland, have been analyzed on long-term space-exposed male C57BL/10 mice, either wild type or pleiotrophin transgenic, overexpressing osteoblast stimulating factor-1. Glands were submitted to morphological and functional analysis
    • …
    corecore