9 research outputs found
Regulation of TRAIL expression by PRAME and EZH2 as potential therapeutic target against solid tumors
We thank the Department of Pathologic Anatomy and the International Center for Research, from AC Camargo Hospital for the tissue microarray assays and for the donation of cancer cell lines, respectively. We thank Dr. René Bernards (Amsterdam, The Netherlands) for the gift of PRAME and EZH2 short hairpin RNA vectors
In vivo assessment of specific cytotoxic T lymphocyte killing
The direct killing of target cells by cytotoxic T lymphocytes (CTLs) plays a fundamental role in protective immunity to viral, bacterial, protozoan and fungi infections, as well as to tumor cells. In vivo cytotoxic assays take into account the interaction of target and effector cells in the context of the proper microenvironment making the analysis biologically more relevant than in vitro cytotoxic assays. Thus, the development, improvement and validation of in vivo methods are necessary in view of the importance of the results they may provide. We describe and discuss in this manuscript a method to evaluate in vivo specific cytotoxic T lymphocyte killing. We used as model system mice immunized with human recombinant replication-deficient adenovirus 5 (HAd5) containing different transgenes as the trigger of a CTL-mediated immune response. To these mice, we adoptively transferred syngeneic cells labeled with different vital fluorescent dyes. Donor cells were pulsed (target) or not (control non-target) with distinct CD8 T-cell epitopes, mixed in a 1:1 ratio and injected i.v. into immunized or non-immunized recipient mice. After 18-24h, spleen cells are collected and analysed by flow cytometry. A deviation from the 1:1 ratio of control and target cell populations indicates antigen specific lysis of target cellsFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Instituto Nacional de Ciência e Tecnologia (INCT)Conselho Nacional de Desenvolvimento CientÃfico e Tecnológico (CNPq
ZAP-70 expression is associated with increased CD4 central memory T cells in chronic lymphocytic leukemia: cross-sectional study
Background: Although chronic lymphocytic leukemia is basically a B cell disease, its pathophysiology and evolution are thought to be significantly influenced by T cells, as these are probably the most important interaction partner of neoplastic B cells, participating in their expansion, differentiation and survival. Chronic lymphocytic leukemia B cells may also drive functional and phenotypic changes of non-malignant T cells. There are few data about the association between memory T cells and prognosis, especially related to ZAP-70, a common reliable surrogate of the gold standard chronic lymphocytic leukemia prognostic markers. Objective: The aim of this study was to investigate whether the expression of ZAP-70 in chronic lymphocytic leukemia patients is associated with abnormal patterns of the distribution of naïve and memory T cells related to crosstalk between these cells. Methods: In this cross-sectional, controlled study, patients with chronic lymphocytic leukemia were compared with healthy blood donors regarding the expression of ZAP-70 and the distribution of naïve and memory T cell subsets in peripheral blood as measured by flow cytometry. Results: ZAP-70 positive patients presented an increased frequency and absolute number of central memory CD4+ T cells, but not CD8+ T cells, compared to ZAP-70 negative patients and age-matched apparently healthy donors. Conclusions: Because central memory CD4+ T cells are located in lymph nodes and express CD40L, we consider that malignant ZAP-70-positive B cells may receive beneficial signals from central memory CD4+ T cells as they accumulate, which could contribute to more aggressive disease. Keywords: Chronic lymphocytic leukemia, ZAP-70 protein-tyrosine kinase, Memory T cell
Melatonin Protects CD4(+) T Cells from Activation-Induced Cell Death by Blocking NFAT-Mediated CD95 Ligand Upregulation
Over the past 20 y, the hormone melatonin was found to be produced in extrapineal sites, including cells of the immune system. Despite the increasing data regarding the biological effects of melatonin on the regulation of the immune system, the effect of this molecule on T cell survival remains largely unknown. Activation-induced cell death plays a critical role in the maintenance of the homeostasis of the immune system by eliminating self-reactive or chronically stimulated T cells. Because activated T cells not only synthesize melatonin but also respond to it, we investigated whether melatonin could modulate activation-induced cell death. We found that melatonin protects human and murine CD4(+) T cells from apoptosis by inhibiting CD95 ligand mRNA and protein upregulation in response to TCR/CD3 stimulation. This inhibition is a result of the interference with calmodulin/calcineurin activation of NFAT that prevents the translocation of NFAT to the nucleus. Accordingly, melatonin has no effect on T cells transfected with a constitutively active form of NFAT capable of migrating to the nucleus and transactivating target genes in the absence of calcineurin activity. Our results revealed a novel biochemical pathway that regulates the expression of CD95 ligand and potentially other downstream targets of NFAT activation. The Journal of Immunology, 2010, 184: 3487-3494.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)FAPESP Fundacao de Amparo a Pesquisa do Estado de Sao PauloCAPES Coordenação de Aperfeiçoamento de Pessoal de NÃvel SuperiorCoordenação de Aperfeiçoamento de Pessoal de NÃvel Superior (CAPES)Conselho Nacional de Desenvolvimento CientÃfico e Tecnológico (CNPq)CNPq Brazilian Research Counci
Cytotoxicity of cashew flavonoids towards malignant cell lines
The leaves of the Cashew plant (Anacardium occidentale L.) are used by the folk medicine in South America and West Africa. This plant is rich in flavonoids, which are polyphenolic compounds widespread in plants, and that have diverse physiological effects. In a sub-acute toxicity assay it was found that an ethanolic extract of Cashew leaves elicited lymphopenia in rats. The extract was also found to be cytotoxic and to induce apoptosis in Jurkat (acute lymphoblastic leukemia) cells. The crude ethanolic extract was fractionated and resolved by HPLC. One of the four fractions obtained led to the isolation of the biflavonoid agasthisflavone. [H-3]-thymidine incorporation assays and flow cytometry analysis showed that the isolated compound displayed a high anti-proliferative effect in Jurkat cells with an IC50 of 2.4 mu g/ml (4.45 mu M). The effect of agathisflavone on the acute promyelocytic leukemia cell line HL60, Burkitt lymphoma Raji cells and Hep-2 laryngeal carcinoma cells was also tested. The two latter ones were only mildly affected by agathisflavone. It is also shown that agathisflavone induces apoptosis in Jurkat cells and it this proposed that this is the likely mechanism of agathisflavone specific cytotoxicity. (C) 2010 Elsevier GmbH. All rights reserved.Bryan Gunns Leukaemia Appeal (UK)Bryan Gunn's Leukaemia Appeal (UK
Effects of Aedes aegypti salivary components on dendritic cell and lymphocyte biology
BACKGROUND: \ud
Saliva is a key element of interaction between hematophagous mosquitoes and their vertebrate hosts. In addition to allowing a successful blood meal by neutralizing or delaying hemostatic responses, the salivary cocktail is also able to modulate the effector mechanisms of host immune responses facilitating, in turn, the transmission of several types of microorganisms. Understanding how the mosquito uses its salivary components to circumvent host immunity might help to clarify the mechanisms of transmission of such pathogens and disease establishment.\ud
METHODS: \ud
Flow cytometry was used to evaluate if increasing concentrations of A. aegypti salivary gland extract (SGE) affects bone marrow-derived DC differentiation and maturation. Lymphocyte proliferation in the presence of SGE was estimated by a colorimetric assay. Western blot and Annexin V staining assays were used to assess apoptosis in these cells. Naïve and memory cells from mosquito-bite exposed mice or OVA-immunized mice and their respective controls were analyzed by flow cytometry.\ud
RESULTS: \ud
Concentration-response curves were employed to evaluate A. aegypti SGE effects on DC and lymphocyte biology. DCs differentiation from bone marrow precursors, their maturation and function were not directly affected by A. aegypti SGE (concentrations ranging from 2.5 to 40 μg/mL). On the other hand, lymphocytes were very sensitive to the salivary components and died in the presence of A. aegypti SGE, even at concentrations as low as 0.1 μg/mL. In addition, A. aegypti SGE was shown to induce apoptosis in all lymphocyte populations evaluated (CD4+ and CD8+ T cells, and B cells) through a mechanism involving caspase-3 and caspase-8, but not Bim. By using different approaches to generate memory cells, we were able to verify that these cells are resistant to SGE effects.\ud
CONCLUSION: \ud
Our results show that lymphocytes, and not DCs, are the primary target of A. aegypti salivary components. In the presence of A. aegypti SGE, naïve lymphocyte populations die by apoptosis in a caspase-3- and caspase-8-dependent pathway, while memory cells are selectively more resistant to its effects. The present work contributes to elucidate the activities of A. aegypti salivary molecules on the antigen presenting cell-lymphocyte axis and in the biology of these cells.FAPESP, 2009/12247-5CNPq 134660/2010-2FAPESP, 2010/18216-1FAPESP, 2011/06626-3FAPESP, 2011/15569-3FAPESP, 2009/09892-6FAPESP, 2009/53637-0CNPq 302194/2009-6CAPES 552258/2011-3MCT / CNPq / MS / SCTIE / DECIT / PRONEX 555648/2009-5Rede de Pesquisa em Bioactive Moléculas de Artrópodes Vetore
Cytosolic flagellin-induced lysosomal pathway regulates inflammasome-dependent and -independent macrophage responses
NAIP5/NLRC4 (neuronal apoptosis inhibitory protein 5/nucleotide oligomerization domain-like receptor family, caspase activation recruitment domain domain-containing 4) inflammasome activation by cytosolic flagellin results in caspase-1-mediated processing and secretion of IL-1β/IL-18 and pyroptosis, an inflammatory cell death pathway. Here, we found that although NLRC4, ASC, and caspase-1 are required for IL-1β secretion in response to cytosolic flagellin, cell death, nevertheless, occurs in the absence of these molecules. Cytosolic flagellin-induced inflammasome-independent cell death is accompanied by IL-1α secretion and is temporally correlated with the restriction of Salmonella Typhimurium infection. Despite displaying some apoptotic features, this peculiar form of cell death do not require caspase activation but is regulated by a lysosomal pathway, in which cathepsin B and cathepsin D play redundant roles. Moreover, cathepsin B contributes to NAIP5/NLRC4 inflammasome-induced pyroptosis and IL-1α and IL-1β production in response to cytosolic flagellin. Together, our data describe a pathway induced by cytosolic flagellin that induces a peculiar form of cell death and regulates inflammasome-mediated effector mechanisms of macrophagesFundação de Amparo à Pesquisa do Estado de São PauloBrazilian Research Counci
Differential expression of apoptosis-related genes from death receptor pathway in chronic myeloproliferative diseases
Background Chronic myeloproliferative disorders (MPDs) are clonal haematopoietic stem cell malignancies characterised by an accumulation of mature myeloid cells in bone marrow and peripheral blood. Deregulation of the apoptotic machinery may be associated with MPD physiopathology. Aims To evaluate expression of death receptors` family members, mononuclear cell apoptosis resistance, and JAK2 allele burden. Subjects and Methods Bone marrow haematopoietic progenitor CD34 cells were separated using the Ficoll-hypaque protocol followed by the Miltenyi CD34 isolation kit, and peripheral blood leukocytes were separated by the Haes-Steril method. Total RNA was extracted by the Trizol method, the High Capacity Kit was used to synthesise cDNA, and real-time PCR was performed using SybrGreen in ABIPrism 7500 equipment. The results of gene expression quantification are given as 2(-Delta Delta Ct). The JAK2 V617F mutation was detected by real-time allelic discrimination PCR assay. Peripheral blood mononuclear cells (PBMCs) were isolated by the Ficoll-hypaque protocol and cultured in the presence of apoptosis inducers. Results In CD34 cells, there was mRNA overexpression for fas, faim and c-flip in polycythaemia vera (PV), essential thrombocythaemia (ET) and primary myelofibrosis (PMF), as well as fasl in PMF, and dr4 levels were increased in ET. In leukocytes, fas, c-flip and trail levels were increased in PV, and dr5 expression was decreased in ET. There was an association between dr5 and fasl expression and JAK2V617F mutation. PBMCs from patients with PV, ET or PMF showed resistance to apoptosis inducers. Conclusions The results indicate deregulation of apoptosis gene expression, which may be associated with MPD pathogenesis leading to accumulation of myeloid cells in MPDs.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)[08/54387-5]Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)[06/50094-8]Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento CientÃfico e Tecnológico (CNPq)Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de NÃvel Superior (CAPES)Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES