548 research outputs found

    Exciton fine structure and spin decoherence in monolayers of transition metal dichalcogenides

    Full text link
    We study the neutral exciton energy spectrum fine structure and its spin dephasing in transition metal dichalcogenides such as MoS2_2. The interaction of the mechanical exciton with its macroscopic longitudinal electric field is taken into account. The splitting between the longitudinal and transverse excitons is calculated by means of the both electrodynamical approach and kâ‹…p\mathbf k \cdot \mathbf p perturbation theory. This long-range exciton exchange interaction can induce valley polarization decay. The estimated exciton spin dephasing time is in the picosecond range, in agreement with available experimental data.Comment: 5 pages, 3 figure

    Hadronic and radiative three-body decays of J/psi involving the scalars f0(1370), f0(1500) and f0(1710)

    Full text link
    We study the role of the scalar resonances f0(1370), f0(1500) and f0(1710) in the strong and radiative three-body decays of J/psi with J/psi to V + P P (gamma gamma) and J/psi to gamma + P P (V V), where P (V) denotes a pseudoscalar (vector) meson. We assume that the scalars result from a glueball-quarkonium mixing scheme while the dynamics of the transition process is described in an effective chiral Lagrangian approach. Present data on J/psi to V + P P are well reproduced, predictions for the radiative processes serve as further tests of this scenario.Comment: 15 page

    Description of double beta decay within continuum-QRPA

    Full text link
    A method to calculate the nuclear double beta decay (2νββ2\nu\beta\beta- and 0νββ0\nu\beta\beta-) amplitudes within the continuum random phase approximation (cQRPA) is formulated. Calculations of the ββ\beta\beta transition amplitudes within the cQRPA are performed for ^{76}Ge, ^{100}Mo and ^{130}Te. A rather simple nuclear Hamiltonian consisting of phenomenological mean field and zero-range residual particle-hole and particle-particle interaction is used. The calculated M^{2\nu} are almost not affected when the single-particle continuum is taken into account. At the same time, a regular suppression of the 0νββ0\nu\beta\beta-amplitude is found that can be associated with additional ground state correlations due to collective states in the continuum. It is expected that future inclusion of the nucleon pairing in the single-particle continuum will somewhat compensate the suppression.Comment: 20 pages, 1 figure, published versio

    Exciton dynamics in WSe2 bilayers

    Full text link
    We investigate exciton dynamics in 2H-WSe2 bilayers in time-resolved photoluminescence (PL) spectroscopy. Fast PL emission times are recorded for both the direct exciton with Ď„D\tau_{D} ~ 3 ps and the indirect optical transition with Ď„i\tau_{i} ~ 25 ps. For temperatures between 4 to 150 K Ď„i\tau_{i} remains constant. Following polarized laser excitation, we observe for the direct exciton transition at the K point of the Brillouin zone efficient optical orientation and alignment during the short emission time Ď„D\tau_{D}. The evolution of the direct exciton polarization and intensity as a function of excitation laser energy is monitored in PL excitation (PLE) experiments.Comment: 4 pages, 3 figure
    • …
    corecore