3 research outputs found

    Ambient Stable Quantitative PCR Reagents for the Detection of Yersinia pestis

    Get PDF
    Plague, caused by Yersinia pestis, is one of the oldest and most dangerous diseases in human history, and has claimed millions of lives in the three major historical pandemics. Although panic caused by the Black Death is fading, the threat of the reemergence of plague pandemics still exists, with the additional potential of misuse in biowarfare or bioterrorism. Rapid on-site detection and identification of the pathogen is of paramount significance for timely implementation of effective countermeasures. TaqMan probe-based real-time PCR assays can give quick and accurate identification; however, the need for cold delivery and storage prevents its potential on-site application. The objective of this study was to develop a stable PCR system for easy delivery and storage under room temperature, which is vital for conventional plague surveillance and for preparedness in public health emergencies. We present a solution to this particular issue, hoping that it is helpful to future applications

    Rapid and Sensitive Detection of Yersinia pestis Using Amplification of Plague Diagnostic Bacteriophages Monitored by Real-Time PCR

    Get PDF
    BACKGROUND: Yersinia pestis, the agent of plague, has caused many millions of human deaths and still poses a serious threat to global public health. Timely and reliable detection of such a dangerous pathogen is of critical importance. Lysis by specific bacteriophages remains an essential method of Y. pestis detection and plague diagnostics. METHODOLOGY/PRINCIPAL FINDINGS: The objective of this work was to develop an alternative to conventional phage lysis tests--a rapid and highly sensitive method of indirect detection of live Y. pestis cells based on quantitative real-time PCR (qPCR) monitoring of amplification of reporter Y. pestis-specific bacteriophages. Plague diagnostic phages phiA1122 and L-413C were shown to be highly effective diagnostic tools for the detection and identification of Y. pestis by using qPCR with primers specific for phage DNA. The template DNA extraction step that usually precedes qPCR was omitted. phiA1122-specific qPCR enabled the detection of an initial bacterial concentration of 10(3) CFU/ml (equivalent to as few as one Y. pestis cell per 1-microl sample) in four hours. L-413C-mediated detection of Y. pestis was less sensitive (up to 100 bacteria per sample) but more specific, and thus we propose parallel qPCR for the two phages as a rapid and reliable method of Y. pestis identification. Importantly, phiA1122 propagated in simulated clinical blood specimens containing EDTA and its titer rise was detected by both a standard plating test and qPCR. CONCLUSIONS/SIGNIFICANCE: Thus, we developed a novel assay for detection and identification of Y. pestis using amplification of specific phages monitored by qPCR. The method is simple, rapid, highly sensitive, and specific and allows the detection of only live bacteria
    corecore