111 research outputs found
Line Broadening and Decoherence of Electron Spins in Phosphorus-Doped Silicon Due to Environmental 29^Si Nuclear Spins
Phosphorus-doped silicon single crystals with 0.19 % <= f <= 99.2 %, where f
is the concentration of 29^Si isotopes, are measured at 8 K using a pulsed
electron spin resonance technique, thereby the effect of environmental 29^Si
nuclear spins on the donor electron spin is systematically studied. The
linewidth as a function of f shows a good agreement with theoretical analysis.
We also report the phase memory time T_M of the donor electron spin dependent
on both f and the crystal axis relative to the external magnetic field.Comment: 5 pages, 4 figure
Electronic measurement and control of spin transport in Silicon
The electron spin lifetime and diffusion length are transport parameters that
define the scale of coherence in spintronic devices and circuits. Since these
parameters are many orders of magnitude larger in semiconductors than in
metals, semiconductors could be the most suitable for spintronics. Thus far,
spin transport has only been measured in direct-bandgap semiconductors or in
combination with magnetic semiconductors, excluding a wide range of
non-magnetic semiconductors with indirect bandgaps. Most notable in this group
is silicon (Si), which (in addition to its market entrenchment in electronics)
has long been predicted a superior semiconductor for spintronics with enhanced
lifetime and diffusion length due to low spin-orbit scattering and lattice
inversion symmetry. Despite its exciting promise, a demonstration of coherent
spin transport in Si has remained elusive, because most experiments focused on
magnetoresistive devices; these methods fail because of universal impedance
mismatch obstacles, and are obscured by Lorentz magnetoresistance and Hall
effects. Here we demonstrate conduction band spin transport across 10 microns
undoped Si, by using spin-dependent ballistic hot-electron filtering through
ferromagnetic thin films for both spin-injection and detection. Not based on
magnetoresistance, the hot electron spin-injection and detection avoids
impedance mismatch issues and prevents interference from parasitic effects. The
clean collector current thus shows independent magnetic and electrical control
of spin precession and confirms spin coherent drift in the conduction band of
silicon.Comment: Single PDF file with 4 Figure
Recommended from our members
Nuclear spin decoherence of neutral P-31 donors in silicon: Effect of environmental Si-29 nuclei
Spectral diffusion arising from Si29 nuclear spin flip-flops, known to be a primary source of electron spin decoherence in silicon, is also predicted to limit the coherence times of neutral donor nuclear spins in silicon. Here, the impact of this mechanism on P31 nuclear spin coherence is measured as a function of Si29 concentration using X-band pulsed electron nuclear double resonance. The P31 nuclear spin echo decays show that decoherence is controlled by Si29 flip-flops resulting in both fast (exponential) and slow (nonexponential) spectral diffusion processes. The decay times span a range from 100 ms in crystals containing 50% Si29 to 3 s in crystals containing 1% Si29. These nuclear spin echo decay times for neutral donors are orders of magnitude longer than those reported for ionized donors in natural silicon. The electron spin of the neutral donors “protects” the donor nuclear spins by suppressing Si29 flip-flops within a “frozen core,” as a result of the detuning of the Si29 spins caused by their hyperfine coupling to the electron spin
Solid state quantum memory using the 31P nuclear spin
The transfer of information between different physical forms is a central
theme in communication and computation, for example between processing entities
and memory. Nowhere is this more crucial than in quantum computation, where
great effort must be taken to protect the integrity of a fragile quantum bit.
Nuclear spins are known to benefit from long coherence times compared to
electron spins, but are slow to manipulate and suffer from weak thermal
polarisation. A powerful model for quantum computation is thus one in which
electron spins are used for processing and readout while nuclear spins are used
for storage. Here we demonstrate the coherent transfer of a superposition state
in an electron spin 'processing' qubit to a nuclear spin 'memory' qubit, using
a combination of microwave and radiofrequency pulses applied to 31P donors in
an isotopically pure 28Si crystal. The electron spin state can be stored in the
nuclear spin on a timescale that is long compared with the electron decoherence
time and then coherently transferred back to the electron spin, thus
demonstrating the 31P nuclear spin as a solid-state quantum memory. The overall
store/readout fidelity is about 90%, attributed to systematic imperfections in
radiofrequency pulses which can be improved through the use of composite
pulses. We apply dynamic decoupling to protect the nuclear spin quantum memory
element from sources of decoherence. The coherence lifetime of the quantum
memory element is found to exceed one second at 5.5K.Comment: v2: Tomography added and storage of general initial state
Electron Spin Resonance of P Donors in Isotopically Purified Si Detected by Contactless Photoconductivity
Coherence times of electron spins bound to phosphorus donors have been measured, using a standard Hahn echo technique, to be up to 20 ms in isotopically pure silicon with [P]=1014cm-3 and at temperatures ≤4K. Although such times are exceptionally long for electron spins in the solid state, they are nevertheless limited by donor electron spin-spin interactions. Suppressing such interactions requires even lower donor concentrations, which lie below the detection limit for typical ESR spectrometers. Here we describe an alternative method for phosphorus donor ESR detection, exploiting the spin-to-charge conversion provided by the optical donor-bound-exciton transition. We characterize the method and its dependence on laser power and use it to measure a coherence time of T2=130ms for one of the purest silicon samples grown to date ([P]=5×1011cm-3). We then benchmark this result using an alternative application of the donor-bound-exciton transition: optically polarizing the donor spins before using conventional ESR detection at 1.7 K for a sample with [P]=4×1012cm-3, and measuring in this case a T2 of 350 ms. In both cases, T2 is obtained after accounting for the effects of magnetic field noise, and the use of more stable (e.g., permanent) magnets could yield even longer coherence times
Controlling the quantum dynamics of a mesoscopic spin bath in diamond
Understanding and mitigating decoherence is a key challenge for quantum
science and technology. The main source of decoherence for solid-state spin
systems is the uncontrolled spin bath environment. Here, we demonstrate quantum
control of a mesoscopic spin bath in diamond at room temperature that is
composed of electron spins of substitutional nitrogen impurities. The resulting
spin bath dynamics are probed using a single nitrogen-vacancy (NV) centre
electron spin as a magnetic field sensor. We exploit the spin bath control to
dynamically suppress dephasing of the NV spin by the spin bath. Furthermore, by
combining spin bath control with dynamical decoupling, we directly measure the
coherence and temporal correlations of different groups of bath spins. These
results uncover a new arena for fundamental studies on decoherence and enable
novel avenues for spin-based magnetometry and quantum information processing
A quantum spin transducer based on nano electro-mechancial resonator arrays
Implementation of quantum information processing faces the contradicting
requirements of combining excellent isolation to avoid decoherence with the
ability to control coherent interactions in a many-body quantum system. For
example, spin degrees of freedom of electrons and nuclei provide a good quantum
memory due to their weak magnetic interactions with the environment. However,
for the same reason it is difficult to achieve controlled entanglement of spins
over distances larger than tens of nanometers. Here we propose a universal
realization of a quantum data bus for electronic spin qubits where spins are
coupled to the motion of magnetized mechanical resonators via magnetic field
gradients. Provided that the mechanical system is charged, the magnetic moments
associated with spin qubits can be effectively amplified to enable a coherent
spin-spin coupling over long distances via Coulomb forces. Our approach is
applicable to a wide class of electronic spin qubits which can be localized
near the magnetized tips and can be used for the implementation of hybrid
quantum computing architectures
A valley-spin qubit in a carbon nanotube
Although electron spins in III-V semiconductor quantum dots have shown great
promise as qubits, a major challenge is the unavoidable hyperfine decoherence
in these materials. In group IV semiconductors, the dominant nuclear species
are spinless, allowing for qubit coherence times that have been extended up to
seconds in diamond and silicon. Carbon nanotubes are a particularly attractive
host material, because the spin-orbit interaction with the valley degree of
freedom allows for electrical manipulation of the qubit. In this work, we
realise such a qubit in a nanotube double quantum dot. The qubit is encoded in
two valley-spin states, with coherent manipulation via electrically driven spin
resonance (EDSR) mediated by a bend in the nanotube. Readout is performed by
measuring the current in Pauli blockade. Arbitrary qubit rotations are
demonstrated, and the coherence time is measured via Hahn echo. Although the
measured decoherence time is only 65 ns in our current device, this work offers
the possibility of creating a qubit for which hyperfine interaction can be
virtually eliminated
Quantum control of hybrid nuclear-electronic qubits
Pulsed magnetic resonance is a wide-reaching technology allowing the quantum
state of electronic and nuclear spins to be controlled on the timescale of
nanoseconds and microseconds respectively. The time required to flip either
dilute electronic or nuclear spins is orders of magnitude shorter than their
decoherence times, leading to several schemes for quantum information
processing with spin qubits. We investigate instead the novel regime where the
eigenstates approximate 50:50 superpositions of the electronic and nuclear spin
states forming "hybrid nuclear-electronic" qubits. Here we demonstrate quantum
control of these states for the first time, using bismuth-doped silicon, in
just 32 ns: this is orders of magnitude faster than previous experiments where
pure nuclear states were used. The coherence times of our states are five
orders of magnitude longer, reaching 4 ms, and are limited by the
naturally-occurring 29Si nuclear spin impurities. There is quantitative
agreement between our experiments and no-free-parameter analytical theory for
the resonance positions, as well as their relative intensities and relative
Rabi oscillation frequencies. In experiments where the slow manipulation of
some of the qubits is the rate limiting step, quantum computations would
benefit from faster operation in the hybrid regime.Comment: 20 pages, 8 figures, new data and simulation
Double quantum dot with integrated charge sensor based on Ge/Si heterostructure nanowires
Coupled electron spins in semiconductor double quantum dots hold promise as
the basis for solid-state qubits. To date, most experiments have used III-V
materials, in which coherence is limited by hyperfine interactions. Ge/Si
heterostructure nanowires seem ideally suited to overcome this limitation: the
predominance of spin-zero nuclei suppresses the hyperfine interaction and
chemical synthesis creates a clean and defect-free system with highly
controllable properties. Here we present a top gate-defined double quantum dot
based on Ge/Si heterostructure nanowires with fully tunable coupling between
the dots and to the leads. We also demonstrate a novel approach to charge
sensing in a one-dimensional nanostructure by capacitively coupling the double
dot to a single dot on an adjacent nanowire. The double quantum dot and
integrated charge sensor serve as an essential building block required to form
a solid-state spin qubit free of nuclear spin.Comment: Related work at http://marcuslab.harvard.edu and
http://cmliris.harvard.ed
- …