3 research outputs found

    Barbed suture vs conventional tenorrhaphy: biomechanical analysis in an animal model.

    Get PDF
    BACKGROUND: The advantages of barbed suture for tendon repair could be to eliminate the need for a knot and to better distribute the load throughout the tendon so as to reduce the deformation at the repair site. The purpose of this study was to evaluate the breaking force and the repair site deformation of a new barbed tenorrhaphy technique in an animal model. MATERIALS AND METHODS: Sixty porcine flexor tendons were divided randomly into three groups and repaired with one of the following techniques: a new 4-strand barbed technique using 2/0 polypropylene Quillâ„¢ SRS or 2/0 polydioxanone Quillâ„¢ SRS and a modified Kessler technique using 3/0 prolene. All tendons underwent mechanical testing to assess the 2-mm gap formation force, the breaking force and the mode of failure. The percentage change in tendon cross-sectional area before and after repair was calculated. RESULTS: The two-sample Student t-test demonstrated a significant increase in 2-mm gap formation force and in breaking force with barbed sutures, independently from suture material, when compared to traditional Kessler suture. Concerning the tendon profile, we registered less bunching at the repair site in the two barbed groups compared with the Kessler group. CONCLUSIONS: This study confirms the promising results achieved in previous ex vivo studies about the use of barbed suture in flexor tendon repair. In our animal model, tenorrhaphy with Quillâ„¢ SRS suture guarantees a breaking force of repair that exceeds the 40-50 N suggested as sufficient to initiate early active motion, and a smoother profile at the repair site. LEVEL OF EVIDENCE: Not applicable
    corecore