28 research outputs found
Larvicidal activity of metabolites from the endophytic Podospora sp. against the malaria vector Anopheles gambiae
In a screening for natural products with mosquito larvicidal activities, the endophytic fungus Podospora sp. isolated from the plant Laggera alata (Asteraceae) was conspicuous. Two xanthones, sterigmatocystin (1) and secosterigmatocystin (2), and an anthraquinone derivative (3) 13-hydroxyversicolorin B were isolated after fermentation on M2 medium. These compounds were characterised using spectroscopic and X-ray analysis and examined against third instar larvae of Anopheles gambiae. The results demonstrated that compound 1 was the most potent one with LC50 and LC90 values of 13.3 and 73.5 ppm, respectively. Over 95% mortality was observed at a concentration 100 ppm after 24 h. These results compared farvourably with the commercial larvicide pylarvex® that showed 100% mortality at the same concentration. Compound 3 was less potent and had an LC50 of 294.5 ppm and over 95% mortality was achieved at a concentration of 1,000 ppm. Secosterigmatocystin (2) revealed relatively weak activity and therefore LC values were not determined
TaqMan real-time polymerase chain reaction for detection of Ophidiomyces ophiodiicola, the fungus associated with snake fungal disease
Convergent evolution of highly reduced fruiting bodies in Pezizomycotina suggests key adaptations to the bee habitat
BACKGROUND: Among the understudied fungi found in nature are those living in close association with social and solitary bees. The bee-specialist genera Bettsia, Ascosphaera and Eremascus are remarkable not only for their specialized niche but also for their simple fruiting bodies or ascocarps, which are morphologically anomalous in Pezizomycotina. Bettsia and Ascosphaera are characterized by a unicellular cyst-like cleistothecium known as a spore cyst, while Eremascus is characterized by completely naked asci, or asci not formed within a protective ascocarp. Before molecular phylogenetics the placement of these genera within Pezizomycotina remained tentative; morphological characters were misleading because they do not produce multicellular ascocarps, a defining character of Pezizomycotina. Because of their unique fruiting bodies, the close relationship of these bee-specialist fungi and their monophyly appeared certain. However, recent molecular studies have shown that Bettsia is not closely related to Ascosphaera. In this study, I isolated the very rare fungus Eremascus fertilis (Ascomycota, Pezizomycotina) from the bee bread of honey bees. These isolates represent the second report of E. fertilis both in nature and in the honey bee hive. To establish the systematic position of E. fertilis and Bettsia alvei, I performed phylogenetic analyses of nuclear ribosomal LSU + SSU DNA sequences from these species and 63 additional ascomycetes. RESULTS: The phylogenetic analyses revealed that Eremascus is not monophyletic. Eremascus albus is closely related to Ascosphaera in Eurotiomycetes while E. fertilis belongs in Myxotrichaceae, a putative member of Leotiomycetes. Bettsia is not closely related to Ascosphaera and like E. fertilis apparently belongs in Leotiomycetes. These results indicate that both the naked ascus and spore cyst evolved twice in the Pezizomycotina and in distantly related lineages. The new genus Skoua is described to accommodate E. fertilis. CONCLUSIONS: The naked ascus and spore cyst are both shown to have evolved convergently within the bee habitat. The convergent evolution of these unusual ascocarps is hypothesized to be adaptive for bee-mediated dispersal. Elucidating the dispersal strategies of these fungal symbionts contributes to our understanding of their interaction with bees and provides insight into the factors which potentially drive the evolution of reduced ascocarps in Pezizomycotina. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12862-015-0401-6) contains supplementary material, which is available to authorized users
Harorepupu aotearoa (Onygenales) gen. sp. nov.; a threatened fungus from shells of Powelliphanta and Paryphanta snails (Rhytididae)
A cleistothecial fungus, known only from the shells of giant land snails of the family Rhytidae, is described as a new genus and species within Onygenales, Harorepupu aotearoa gen. sp. nov. Known only from the sexual morph, this fungus is characterized morphologically by a membranous ascoma with no appendages and ascospores with a sparse network of ridges. Ribosomal DNA sequences place the new species within Onygenales, but comparison with the known genetic diversity within the order linked it to no existing genus or family. It is the first species of Onygenales reported from the shells of terrestrial snails. This fungus has been listed as Critically Endangered in New Zealand and has been previously referred to as ‘Trichocomaceae gen. nov.’ in those threat lists
Isolation of diverse viable fungi from the larvae of the introduced chironomid Eretmoptera murphyi on Signy Island
The chironimid midge Eretmoptera murphyi has been introduced to Signy Island and has since become established at a single site. Viable propagules of a diverse range of micro-fungi were recovered from the normal intestinal tract of larvae of E. murphyi, indicating the potential for the larvae to act as vectors for fungal introductions. The fungi present in the intestines of the larvae included ascomycetes, zygomycetes and an oomycete, and this diversity highlights the potential for multiple microbial introductions from a single invertebrate introduction
