398 research outputs found

    Interactions in vivo between the Vif protein of HIV-1 and the precursor (Pr55GAG) of the virion nucleocapsid proteins

    Get PDF
    The abnormality of viral core structure seen in vif-defective HIV-1 grown in PBMCs has suggested a role for Vif in viral morphogenesis. Using an in vivo mammalian two-hybrid assay, the interaction between Vif and the precursor (Pr55GAG) of the virion nucleocapsid proteins has been analysed. This revealed the amino-terminal (aa 1–22) and central (aa 70–100) regions of Vif to be essential for its interaction with Pr55GAG, but deletion of the carboxy-terminal (aa 158–192) region of the protein had only a minor effect on its interaction. Initial deletion studies carried out on Pr55GAG showed that a 35-amino-acid region of the protein bridging the MA(p17)–CA(p24) junction was essential for its ability to interact with Vif. Site-directed mutagenesis of a conserved tryptophan (Trp21) near the amino terminus of Vif showed it to be important for the interaction with Pr55GAG. By contrast, mutagenesis of the highly conserved YLAL residues forming part of the BC-box motif, shown to be important in Vif promoting degradation of APOBEC3G/3F, had little or no effect on the Vif–Pr55GAG interaction

    Direct Observation of the Superfluid Phase Transition in Ultracold Fermi Gases

    Full text link
    Water freezes into ice, atomic spins spontaneously align in a magnet, liquid helium becomes superfluid: Phase transitions are dramatic phenomena. However, despite the drastic change in the system's behaviour, observing the transition can sometimes be subtle. The hallmark of Bose-Einstein condensation (BEC) and superfluidity in trapped, weakly interacting Bose gases is the sudden appearance of a dense central core inside a thermal cloud. In strongly interacting gases, such as the recently observed fermionic superfluids, this clear separation between the superfluid and the normal parts of the cloud is no longer given. Condensates of fermion pairs could be detected only using magnetic field sweeps into the weakly interacting regime. The quantitative description of these sweeps presents a major theoretical challenge. Here we demonstrate that the superfluid phase transition can be directly observed by sudden changes in the shape of the clouds, in complete analogy to the case of weakly interacting Bose gases. By preparing unequal mixtures of the two spin components involved in the pairing, we greatly enhance the contrast between the superfluid core and the normal component. Furthermore, the non-interacting wings of excess atoms serve as a direct and reliable thermometer. Even in the normal state, strong interactions significantly deform the density profile of the majority spin component. We show that it is these interactions which drive the normal-to-superfluid transition at the critical population imbalance of 70(5)%.Comment: 16 pages (incl. Supplemental Material), 5 figure

    An Initial In Vitro Investigation into the Potential Therapeutic Use of SupT1 Cells to Prevent AIDS in HIV-Seropositive Individuals

    Get PDF
    HIV infection usually leads to a progressive decline in number and functionality of CD4+ T lymphocytes, resulting in AIDS development. In this study, I investigated the strategy of using inoculated SupT1 cells to move infection from HIV-1 X4 strains toward the inoculated cells, which should theoretically prevent infection and depletion of normal CD4+ T cells, preventing the development of AIDS-related pathologies. Interestingly, the persistent in vitro replication in SupT1 cells renders the virus less cytopathic and more sensitive to antibody-mediated neutralization, suggesting that replication of the virus in the inoculated SupT1 cells may have a vaccination effect in the long run. In order to mimic the scenario of a therapy in which SupT1 cells are inoculated in an HIV-seropositive patient, I used infected SupT1/PBMC cocultures and a series of control experiments. Infections were done with equal amounts of the wild type HIV-1 LAI virus. The SupT1 CD4+CD8+ T cell population was distinguished from the PBMC CD4+CD8− T cell population by FACS analysis. The results of this study show that the virus-mediated killing of primary CD4+ T cells in the SupT1/PBMC cocultures was significantly delayed, suggesting that the preferential infection of SupT1 cells can induce the virus to spare primary CD4+ T cells from infection and depletion. The preferential infection of SupT1 cells can be explained by the higher viral tropism for the SupT1 cell line. In conclusion, this study demonstrates that it's possible in an in vitro system to use SupT1 cells to prevent HIV infection of primary CD4+ T cells, suggesting that further exploration of the SupT1 cell line as a cell-based therapy against HIV-1 may prove worthwhile

    Assisted evolution enables HIV-1 to overcome a high trim5α-imposed genetic barrier to rhesus macaque tropism

    Get PDF
    Diversification of antiretroviral factors during host evolution has erected formidable barriers to cross-species retrovirus transmission. This phenomenon likely protects humans from infection by many modern retroviruses, but it has also impaired the development of primate models of HIV-1 infection. Indeed, rhesus macaques are resistant to HIV-1, in part due to restriction imposed by the TRIM5α protein (rhTRIM5α). Initially, we attempted to derive rhTRIM5α-resistant HIV-1 strains using two strategies. First, HIV-1 was passaged in engineered human cells expressing rhTRIM5α. Second, a library of randomly mutagenized capsid protein (CA) sequences was screened for mutations that reduced rhTRIM5α sensitivity. Both approaches identified several individual mutations in CA that reduced rhTRIM5α sensitivity. However, neither approach yielded mutants that were fully resistant, perhaps because the locations of the mutations suggested that TRIM5α recognizes multiple determinants on the capsid surface. Moreover, even though additive effects of various CA mutations on HIV-1 resistance to rhTRIM5α were observed, combinations that gave full resistance were highly detrimental to fitness. Therefore, we employed an 'assisted evolution' approach in which individual CA mutations that reduced rhTRIM5α sensitivity without fitness penalties were randomly assorted in a library of viral clones containing synthetic CA sequences. Subsequent passage of the viral library in rhTRIM5α-expressing cells resulted in the selection of individual viral species that were fully fit and resistant to rhTRIM5α. These viruses encoded combinations of five mutations in CA that conferred complete or near complete resistance to the disruptive effects of rhTRIM5α on incoming viral cores, by abolishing recognition of the viral capsid. Importantly, HIV-1 variants encoding these CA substitutions and SIVmac239 Vif replicated efficiently in primary rhesus macaque lymphocytes. These findings demonstrate that rhTRIM5α is difficult to but not impossible to evade, and doing so should facilitate the development of primate models of HIV-1 infection

    The cellular source for APOBEC3G's incorporation into HIV-1

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Human APOBEC3G (hA3G) has been identified as a cellular inhibitor of HIV-1 infectivity. Viral incorporation of hA3G is an essential step for its antiviral activity. Although the mechanism underlying hA3G virion encapsidation has been investigated extensively, the cellular source of viral hA3G remains unclear.</p> <p>Results</p> <p>Previous studies have shown that hA3G forms low-molecular-mass (LMM) and high-molecular-mass (HMM) complexes. Our work herein provides evidence that the majority of newly-synthesized hA3G interacts with membrane lipid raft domains to form Lipid raft-associated hA3G (RA hA3G), which serve as the precursor of the mature HMM hA3G complex, while a minority of newly-synthesized hA3G remains in the cytoplasm as a soluble LMM form. The distribution of hA3G among the soluble LMM form, the RA LMM form and the mature forms of HMM is regulated by a mechanism involving the N-terminal part of the linker region and the C-terminus of hA3G. Mutagenesis studies reveal a direct correlation between the ability of hA3G to form the RA LMM complex and its viral incorporation.</p> <p>Conclusions</p> <p>Together these data suggest that the Lipid raft-associated LMM A3G complex functions as the cellular source of viral hA3G.</p

    Expression of APOBEC3G/3F and G-to-A Hypermutation Levels in HIV-1-Infected Children with Different Profiles of Disease Progression

    Get PDF
    OBJECTIVE: Increasing evidence has accumulated showing the role of APOBEC3G (A3G) and 3F (A3F) in the control of HIV-1 replication and disease progression in humans. However, very few studies have been conducted in HIV-infected children. Here, we analyzed the levels of A3G and A3F expression and induced G-to-A hypermutation in a group of children with distinct profiles of disease progression. METHODOLOGY/PRINCIPAL FINDINGS: Perinatally HIV-infected children were classified as progressors or long-term non-progressors according to criteria based on HIV viral load and CD4 T-cell counts over time. A group of uninfected control children were also enrolled in the study. PBMC proviral DNA was assessed for G-to-A hypermutation, whereas A3G and A3F mRNA were isolated and quantified through TaqMan® real-time PCR. No correlation was observed between disease progression and A3G/A3F expression or hypermutation levels. Although all children analyzed showed higher expression levels of A3G compared to A3F (an average fold of 5 times), a surprisingly high A3F-related hypermutation rate was evidenced in the cohort, irrespective of the child's disease progression profile. CONCLUSION: Our results contribute to the current controversy as to whether HIV disease progression is related to A3G/A3F enzymatic activity. To our knowledge, this is the first study analyzing A3G/F expression in HIV-infected children, and it may pave the way to a better understanding of the host factors governing HIV disease in the pediatric setting

    Roles for Treg expansion and HMGB1 signaling through the TLR1-2-6 axis in determining the magnitude of the antigen-specific immune response to MVA85A

    Get PDF
    © 2013 Matsumiya et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are creditedA better understanding of the relationships between vaccine, immunogenicity and protection from disease would greatly facilitate vaccine development. Modified vaccinia virus Ankara expressing antigen 85A (MVA85A) is a novel tuberculosis vaccine candidate designed to enhance responses induced by BCG. Antigen-specific interferon-γ (IFN-γ) production is greatly enhanced by MVA85A, however the variability between healthy individuals is extensive. In this study we have sought to characterize the early changes in gene expression in humans following vaccination with MVA85A and relate these to long-term immunogenicity. Two days post-vaccination, MVA85A induces a strong interferon and inflammatory response. Separating volunteers into high and low responders on the basis of T cell responses to 85A peptides measured during the trial, an expansion of circulating CD4+ CD25+ Foxp3+ cells is seen in low but not high responders. Additionally, high levels of Toll-like Receptor (TLR) 1 on day of vaccination are associated with an increased response to antigen 85A. In a classification model, combined expression levels of TLR1, TICAM2 and CD14 on day of vaccination and CTLA4 and IL2Rα two days post-vaccination can classify high and low responders with over 80% accuracy. Furthermore, administering MVA85A in mice with anti-TLR2 antibodies may abrogate high responses, and neutralising antibodies to TLRs 1, 2 or 6 or HMGB1 decrease CXCL2 production during in vitro stimulation with MVA85A. HMGB1 is released into the supernatant following atimulation with MVA85A and we propose this signal may be the trigger activating the TLR pathway. This study suggests an important role for an endogenous ligand in innate sensing of MVA and demonstrates the importance of pattern recognition receptors and regulatory T cell responses in determining the magnitude of the antigen specific immune response to vaccination with MVA85A in humans.This work was funded by the Wellcome Trust. MM has a Wellcome Trust PhD studentship and HM is a Wellcome Trust Senior Fello

    Men and COVID-19: the aftermath

    Get PDF
    The global pandemic as a result of the SARS-CoV2 virus has seen over 16m people infected and over 650,000 deaths, with men at double the risk of both developing the severe form of the disease and mortality. There are both biological (sex) and socio-cultural (gender) factors, compounded by socio-economic factors and ethnicity, that impact on the aftermath of what has occurred over the short time that this novel coronavirus has been circulating the world. The potential life-long morbidity as a result of the infection and as a consequence of highly invasive critical care treatment needs to be factored into the rehabilitation of survivors. There are also many men whose lives will have been severely affected both physically and emotionally by the pandemic without ever contracting the disease, with the widespread disruption to normal existence and its impact on their social world and the economy. The implications of the closure of many healthcare services over the initial lockdown will also have both a shorter- and longer-term impact on other diseases due to missed early diagnosis and disrupted treatment regimes. Getting effective public health messages out to the population is critical and this current pandemic is demonstrating that there needs to be a more focused view on men's health behaviour. Without effective public support for preventative action the more likely the disease will continue its path unabated. This review explores the wider ramifications of the disease both for those men who have survived the disease and those that have been affected by the wider social effects of the pandemic. The pandemic should be a wake-up call for all involved in the planning and delivery of health and social care for the greater attention to the central role of sex and gender
    corecore