23 research outputs found

    Promoter regions of Plasmodium vivax are poorly or not recognized by Plasmodium falciparum

    Get PDF
    BACKGROUND: Heterologous promoter analysis in Plasmodium has revealed the existence of conserved cis regulatory elements as promoters from different species can drive expression of reporter genes in heterologous transfection assays. Here, the functional characterization of different Plasmodium vivax promoters in Plasmodium falciparum using luciferase as the reporter gene is presented. METHODS: Luciferase reporter plasmids harboring the upstream regions of the msp1, dhfr, and vir3 genes as well as the full-length intergenic regions of the vir23/24 and ef-1α genes of P. vivax were constructed and transiently transfected in P. falciparum. RESULTS: Only the constructs with the full-length intergenic regions of the vir23/24 and ef-1α genes were recognized by the P. falciparum transcription machinery albeit to values approximately two orders of magnitude lower than those reported by luc plasmids harbouring promoter regions from P. falciparum and Plasmodium berghei. A bioinformatics approach allowed the identification of a motif (GCATAT) in the ef-1α intergenic region that is conserved in five Plasmodium species but is degenerate (GCANAN) in P. vivax. Mutations of this motif in the P. berghei ef-1α promoter region decreased reporter expression indicating it is active in gene expression in Plasmodium. CONCLUSION: Together, this data indicates that promoter regions of P. vivax are poorly or not recognized by the P. falciparum transcription machinery suggesting the existence of P. vivax-specific transcription regulatory elements

    Time course study of oxidative and nitrosative stress and antioxidant enzymes in K(2)Cr(2)O(7)-induced nephrotoxicity

    Get PDF
    BACKGROUND: Potassium dichromate (K(2)Cr(2)O(7))-induced nephrotoxicity is associated with oxidative and nitrosative stress. In this study we investigated the relation between the time course of the oxidative and nitrosative stress with kidney damage and alterations in the following antioxidant enzymes: Cu, Zn superoxide dismutase (Cu, Zn-SOD), Mn-SOD, glutathione peroxidase (GPx), glutathione reductase (GR), and catalase (CAT). METHODS: Nephrotoxicity was induced in rats by a single injection of K(2)Cr(2)O(7). Groups of animals were sacrificed on days 1,2,3,4,6,8,10, and 12. Nephrotoxicity was evaluated by histological studies and by measuring creatinine clearance, serum creatinine, blood urea nitrogen (BUN), and urinary excretion of N-acetyl-β-D-glucosaminidase (NAG) and total protein. Oxidative and nitrosative stress were measured by immunohistochemical localization of protein carbonyls and 3-nitrotyrosine, respectively. Cu, Zn-SOD, Mn-SOD, and CAT were studied by immunohistochemical localization. The activity of total SOD, CAT, GPx, and GR was also measured as well as serum and kidney content of chromium and urinary excretion of NO(2 )(-)/NO(3)(-). Data were compared by two-way analysis of variance followed by a post hoc test. RESULTS: Serum and kidney chromium content increased reaching the highest value on day 1. Nephrotoxicity was made evident by the decrease in creatinine clearance (days 1–4) and by the increase in serum creatinine (days 1–4), BUN (days 1–6), urinary excretion of NAG (days 1–4), and total protein (day 1–6) and by the structural damage to the proximal tubules (days 1–6). Oxidative and nitrosative stress were clearly evident on days 1–8. Urinary excretion of NO(2)(-)/NO(3)(- )decreased on days 2–6. Mn-SOD and Cu, Zn-SOD, estimated by immunohistochemistry, and total SOD activity remained unchanged. Activity of GPx decreased on days 3–12 and those of GR and CAT on days 2–10. Similar findings were observed by immunohistochemistry of CAT. CONCLUSION: These data show the association between oxidative and nitrosative stress with functional and structural renal damage induced by K(2)Cr(2)O(7). Renal antioxidant enzymes were regulated differentially and were not closely associated with oxidative or nitrosative stress or with kidney damage. In addition, the decrease in the urinary excretion of NO(2)(-)/NO(3)(- )was associated with the renal nitrosative stress suggesting that nitric oxide was derived to the formation of reactive nitrogen species involved in protein nitration
    corecore