55 research outputs found
Secondary Endoleak Management Following TEVAR and EVAR.
Endovascular abdominal and thoracic aortic aneurysm repair and are widely used to treat increasingly complex aneurysms. Secondary endoleaks, defined as those detected more than 30 days after the procedure and after previous negative imaging, remain a challenge for aortic specialists, conferring a need for long-term surveillance and reintervention. Endoleaks are classified on the basis of their anatomic site and aetiology. Type 1 and type 2 endoleaks (EL1 and EL2) are the most common endoleaks necessitating intervention. The management of these requires an understanding of their mechanics, and the risk of sac enlargement and rupture due to increased sac pressure. Endovascular techniques are the main treatment approach to manage secondary endoleaks. However, surgery should be considered where endovascular treatments fail to arrest aneurysm growth. This chapter reviews the aetiology, significance, management strategy and techniques for different endoleak types
Exploring validity frames in practice
ABSTRACT: Model-Based Systems Engineering (MBSE) provides workflows, methods, techniques and tools for optimal simulation-based design and realization of complex Software-Intensive, Cyber-Physical Systems. One of the key benefits of this approach is that the behavior of the realized system can be reasoned about and predicted in-silico, before any prototype has been developed. Design models are increasingly used after the system has been realized as well. For example, a (design) digital twin can be used for runtime monitoring to detect and diagnose discrepancies between the simulated and realized system. Inconsistencies may arise, however, because models were used at design time that are not valid within the operating context of the realized system. It is often left to the domain expert to ensure that the models used are valid with respect to their realized counterpart. Due to system complexity and automated Design-Space Exploration (DSE), it is increasingly difficult for a human to reason about model validity. We propose validity frames as an explicit model of the contexts in which a model is a valid representation of a system to rule out invalid designs at design time. We explain the essential and conceptual, yet practical, structure of validity frames and a process for building them using an electrical resistor in the optimal design of a high-pass filter as a running example. We indicate how validity frames can be used in a DSE process, as well as for runtime monitoring
Advanced monoenergetic reconstruction technique for dual-energy computed tomography to evaluate endoleaks after endovascular stent-graft placement
- …
